Kernel estimates for Schr\"odinger type operators with unbounded diffusion and potential terms

作者: Abdelaziz Rhandi , Anna Canale , Cristian Tacelli

DOI:

关键词:

摘要: We prove that the heat kernel associated to Schr\"odinger type operator $A:=(1+|x|^\alpha)\Delta-|x|^\beta$ satisfies estimate $$k(t,x,y)\leq c_1e^{\lambda_0t}e^{c_2t^{-b}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{\beta-\alpha}{4}}}{1+|y|^\alpha} e^{-\frac{2}{\beta-\alpha+2}|x|^{\frac{\beta-\alpha+2}{2}}} e^{-\frac{2}{\beta-\alpha+2}|y|^{\frac{\beta-\alpha+2}{2}}} $$ for $t>0,|x|,|y|\ge 1$, where $c_1,c_2$ are positive constants and $b=\frac{\beta-\alpha+2}{\beta+\alpha-2}$ provided $N>2,\,\alpha\geq 2$ $\beta>\alpha-2$. also obtain an of eigenfunctions $A$.

参考文章(7)
Markus Kunze, Luca Lorenzi, Abdelaziz Rhandi, Kernel estimates for nonautonomous Kolmogorov equations Advances in Mathematics. ,vol. 287, pp. 600- 639 ,(2016) , 10.1016/J.AIM.2015.09.029
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
G. Metafune, D. Pallara, M. Wacker, Feller semigroups on R N Semigroup Forum. ,vol. 65, pp. 159- 205 ,(2002) , 10.1007/S002330010129
Frank W. J. Olver, Asymptotics and Special Functions ,(1974)
Abdelaziz Rhandi, Anna Canale, Cristian Tacelli, Schr\"odinger type operators with unbounded diffusion and potential terms arXiv: Analysis of PDEs. ,(2014)
Dominique Bakry, François Bolley, Ivan Gentil, Patrick Maheux, Weighted Nash Inequalities Revista Matematica Iberoamericana. ,vol. 28, pp. 879- 906 ,(2012) , 10.4171/RMI/695