作者: Abdelaziz Rhandi , Anna Canale , Cristian Tacelli
DOI:
关键词:
摘要: We prove that the heat kernel associated to Schr\"odinger type operator $A:=(1+|x|^\alpha)\Delta-|x|^\beta$ satisfies estimate $$k(t,x,y)\leq c_1e^{\lambda_0t}e^{c_2t^{-b}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{\beta-\alpha}{4}}}{1+|y|^\alpha} e^{-\frac{2}{\beta-\alpha+2}|x|^{\frac{\beta-\alpha+2}{2}}} e^{-\frac{2}{\beta-\alpha+2}|y|^{\frac{\beta-\alpha+2}{2}}} $$ for $t>0,|x|,|y|\ge 1$, where $c_1,c_2$ are positive constants and $b=\frac{\beta-\alpha+2}{\beta+\alpha-2}$ provided $N>2,\,\alpha\geq 2$ $\beta>\alpha-2$. also obtain an of eigenfunctions $A$.