Machine Learning Applications for a Wind Turbine Blade under Continuous Fatigue Loading

作者: Nikolaos Dervilis , M. Choi , Ifigeneia Antoniadou , K.M. Farinholt , S.G. Taylor

DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.588.166

关键词:

摘要: Structural health monitoring (SHM) systems will be one of the leading factors in successful establishment wind turbines energy arena. Detection damage at an early stage is a vital issue as blade failure would catastrophic result for entire turbine. In this study SHM analysis based on experimental measurements vibration analysis, extracted 9m CX-100 under fatigue loading. For machine learning techniques utilised detection turbine blades applied, like non-linear Neural Networks, including Auto-Associative Network (AANN) and Radial Basis Function (RBF) networks models.

参考文章(21)
Ricardo Vigário, Matthias Scholz, Nonlinear PCA: a new hierarchical approach the european symposium on artificial neural networks. pp. 439- 444 ,(2002)
Peter Filzmoser, None, A MULTIVARIATE OUTLIER DETECTION METHOD ,(2004)
Bryan Harris, Analysis and performance of fibre composites Composites Science and Technology. ,vol. 41, pp. 433- 434 ,(1991) , 10.1016/0266-3538(91)90078-4
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
N Dervilis, M Choi, I Antoniadou, K M Farinholt, S G Taylor, R J Barthorpe, G Park, K Worden, C R Farrar, Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading Journal of Physics: Conference Series. ,vol. 382, pp. 012047- ,(2012) , 10.1088/1742-6596/382/1/012047
Stuart G. Taylor, Hyomi Jeong, Jae Kyeong Jang, Gyuhae Park, Kevin M. Farinholt, Michael D. Todd, Curtt M. Ammerman, Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis Proceedings of SPIE. ,vol. 8343, ,(2012) , 10.1117/12.917497
N. Dervilis, R. J. Barthorpe, I. Antoniadou, W. J. Staszewski, K. Worden, Damage detection in carbon composite material typical of wind turbine blades using auto-associative neural networks Health Monitoring of Structural and Biological Systems 2012. ,vol. 8348, pp. 834806- ,(2012) , 10.1117/12.914710