Kernel Local Descriptors with Implicit Rotation Matching

作者: Andrei Bursuc , Giorgos Tolias , Hervé Jégou

DOI: 10.1145/2671188.2749379

关键词:

摘要: In this work we design a kernelized local feature descriptor and propose matching scheme for aligning patches quickly automatically. We analyze the SIFT from kernel view identify reproduce some of its underlying benefits. overcome quantization artifacts by encoding pixel attributes in continous manner via explicit maps. Experiments performed on patch dataset Brown et al. [3] show superiority our over methods based supervised learning.

参考文章(13)
Michael Calonder, Vincent Lepetit, Christoph Strecha, Pascal Fua, BRIEF: Binary Robust Independent Elementary Features Computer Vision – ECCV 2010. ,vol. 6314, pp. 778- 792 ,(2010) , 10.1007/978-3-642-15561-1_56
Herve Jegou, Matthijs Douze, Cordelia Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search european conference on computer vision. ,vol. 5302, pp. 304- 317 ,(2008) , 10.1007/978-3-540-88682-2_24
Giorgos Tolias, Teddy Furon, Hervé Jégou, Orientation Covariant Aggregation of Local Descriptors with Embeddings european conference on computer vision. pp. 382- 397 ,(2014) , 10.1007/978-3-319-10599-4_25
R. Arandjelovic, A. Zisserman, Three things everyone should know to improve object retrieval computer vision and pattern recognition. pp. 2911- 2918 ,(2012) , 10.1109/CVPR.2012.6248018
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, Learning Local Feature Descriptors Using Convex Optimisation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 36, pp. 1573- 1585 ,(2014) , 10.1109/TPAMI.2014.2301163
M Brown, Gang Hua, S Winder, Discriminative Learning of Local Image Descriptors IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 33, pp. 43- 57 ,(2011) , 10.1109/TPAMI.2010.54
Xiaofeng Ren, Dieter Fox, Liefeng Bo, Kernel Descriptors for Visual Recognition neural information processing systems. ,vol. 23, pp. 244- 252 ,(2010)
Fei-Fei Li, P. Perona, A Bayesian hierarchical model for learning natural scene categories computer vision and pattern recognition. ,vol. 2, pp. 524- 531 ,(2005) , 10.1109/CVPR.2005.16
A. Vedaldi, A. Zisserman, Efficient Additive Kernels via Explicit Feature Maps IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 34, pp. 480- 492 ,(2012) , 10.1109/TPAMI.2011.153
Benjamin Recht, Ali Rahimi, Random Features for Large-Scale Kernel Machines neural information processing systems. ,vol. 20, pp. 1177- 1184 ,(2007)