Phase behaviour and physico-chemical properties of the binary systems {1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tosylate+water, or+an alcohol}

作者: Urszula Domańska , Marta Królikowska , Marek Królikowski

DOI: 10.1016/J.FLUID.2010.01.020

关键词:

摘要: Abstract Phase diagrams for the binary systems {1-ethyl-3-methylimidazolium thiocyanate, [EMIM][SCN], or 1-ethyl-3-methylimidazolium tosylate [EMIM][TOS] + water, +an alcohol (C7–C10)} have been determined at atmospheric pressure using a dynamic method. Water shows complete miscibility with [EMIM][SCN] in liquid phase temperature range (298.15–438.15) K. (Liquid + liquid) equilibria and (solid + liquid) region were observed involving alcohols [EMIM][TOS]. The reduction of experimental data has carried out Non-Random Two Liquid (NRTL) equation. reported here are compared analogous previously containing, 1-ethyl-3-methylimidazolium-based ionic liquids (ILs). influence anion on behaviour is discussed. Isothermal vapour–liquid equilibrium (VLE) also measured mixtures (IL) {[EMIM][TOS] + ethanol} T = 373.15 K from p = 0 kPa to p = 225 kPa by an ebulliometric For this system negative molar excess Gibbs energy calculated. work presented includes thermophysical characterization IL Furthermore, volumes ( V m E ) {[EMIM][SCN] + water} K ambient pressure. This exhibits positive values. density correlation these was tested empirical second-order polynomial over wide ranges temperatures. described Redlich–Kister expansions dependent parameters. viscosity variations compositions polynomials. volume expansivity α, αE described. A qualitative analysis trend properties water content performed. Our used predict enthalpy mixing H ). Flory–Benson–Treszczanowicz model (FBT) as well did ERAS model. given chosen number parameters Ai, partial 1 2 presented. basic thermal both pure ILs, i.e. glass-transition heat capacity glass transition differential scanning microcalorimetry technique. Decomposition detected simultaneous TG/DTA experiments. surface tension five temperatures

参考文章(67)
P. Losada-Pérez, M. Blesic, G. Pérez-Sánchez, C.A. Cerdeiriña, J. Troncoso, L. Romaní, J. Szydlowski, L.P.N. Rebelo, Solution thermodynamics near the liquid–liquid critical point: I. First-order excess derivatives Fluid Phase Equilibria. ,vol. 258, pp. 7- 15 ,(2007) , 10.1016/J.FLUID.2007.05.017
Prashant Reddy, Trevor M. Letcher, Phase Equilibrium Studies on Ionic Liquid Systems for Industrial Separation Processes of Complex Organic Mixtures Thermodynamics, Solubility and Environmental Issues. pp. 85- 111 ,(2007) , 10.1016/B978-044452707-3/50007-0
Edmundo Gomes de Azevedo, J. M. Prausnitz, Ruediger N. Lichtenthaler, Molecular Thermodynamics of Fluid-Phase Equilibria ,(1969)
Carl B. Kretschmer, Richard Wiebe, Thermodynamics of Alcohol‐Hydrocarbon Mixtures Journal of Chemical Physics. ,vol. 22, pp. 1697- 1701 ,(1954) , 10.1063/1.1739878
L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/ Physical Chemistry Chemical Physics. ,vol. 3, pp. 5192- 5200 ,(2001) , 10.1039/B106900D
Urszula Domańska, Thermophysical properties and thermodynamic phase behavior of ionic liquids Thermochimica Acta. ,vol. 448, pp. 19- 30 ,(2006) , 10.1016/J.TCA.2006.06.018
Ho-Mu Lin, Hsin-Yi Tien, Ying-Tzu Hone, Ming-Jer Lee, Solubility of selected dibasic carboxylic acids in water, in ionic liquid of (Bmim)(BF4), and in aqueous (Bmim)(BF4) solutions Fluid Phase Equilibria. ,vol. 253, pp. 130- 136 ,(2007) , 10.1016/J.FLUID.2007.02.011
Luisa Alonso, Alberto Arce, María Francisco, Ana Soto, Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid Fluid Phase Equilibria. ,vol. 270, pp. 97- 102 ,(2008) , 10.1016/J.FLUID.2008.06.012