An Introduction to Noncommutative Geometry

作者: J. Madore

DOI: 10.1007/3-540-46552-9_5

关键词:

摘要: A review is made of some recent results in noncommutative geometry, including its use as a regularization procedure. Efforts to add gravitational field models space-time are also reviewed. Special emphasis placed on the case which could be considered analogue parallelizable space-time.

参考文章(146)
Marc A. Rieffel, A. Connes, Yang-Mills for noncommutative two-tori Contemp.Math.. ,vol. 62, pp. 237- 266 ,(1987)
John C. Baez, Javier P. Muniain, Gauge fields, knots, and gravity ,(1994)
Chong-Sun Chu, Pei-Ming Ho, Bruno Zumino, Some Complex Quantum Manifolds and their Geometry Quantum Fields and Quantum Space Time. ,vol. 364, pp. 281- 322 ,(1997) , 10.1007/978-1-4899-1801-7_12
Th. Richter, R. Seiler, Geometric Properties of Transport in Quantum Hall Systems Geometry and Quantum Physics. ,vol. 543, pp. 275- 310 ,(2000) , 10.1007/3-540-46552-9_6
Jan Ambjørn, Bergfinnur J. Durhuus, Thordur Jonsson, Quantum Geometry: A Statistical Field Theory Approach ,(1997)
A.M. Khorrami, A. Shariati, A. AGHAMOHAMMADI, SL h (2)-Symmetric Torsionless Connections Letters in Mathematical Physics. ,vol. 40, pp. 95- 99 ,(1997) , 10.1023/A:1007369432002
J. Froehlich, A. Recknagel, O. Grandjean, Supersymmetric quantum theory, non-commutative geometry, and gravitation. Lecture Notes Les Houches 1995 arXiv: High Energy Physics - Theory. ,(1997)
Abhay Ashtekar, Rodolfo Gambini, Jorge Pullin, Loops, knots, gauge theories and quantum gravity ,(1996)