The Bartnik-Bray outer mass of small metric spheres in time-symmetric 3-slices

作者: David Wiygul

DOI: 10.1007/S00220-017-3005-8

关键词:

摘要: Given a sphere with Bartnik data close to that of a round sphere in Euclidean 3-space, we compute its Bartnik–Bray outer mass to first order in the data's deviation from the standard …

参考文章(34)
Yuguang Shi, Luen-Fai Tam, Positive Mass Theorem and the Boundary Behaviors of Compact Manifolds with Nonnegative Scalar Curvature Journal of Differential Geometry. ,vol. 62, pp. 79- 125 ,(2002) , 10.4310/JDG/1090425530
Hubert L. Bray, PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM Journal of Differential Geometry. ,vol. 59, pp. 177- 267 ,(2001) , 10.4310/JDG/1090349428
P. P. Yu, The limiting behavior of the Liu-Yau quasi-local energy arXiv: General Relativity and Quantum Cosmology. ,(2007)
Jeff A. Viaclovsky, Critical Metrics for Riemannian Curvature Functionals arXiv: Differential Geometry. ,(2014)
Yvonne Choquet-Bruhat, General Relativity and the Einstein Equations ,(2009)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Justin Corvino, Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations Communications in Mathematical Physics. ,vol. 214, pp. 137- 189 ,(2000) , 10.1007/PL00005533
Note on Gravitational Energy Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 381, pp. 215- 224 ,(1982) , 10.1098/RSPA.1982.0066
Brian Smith, Gilbert Weinstein, Quasiconvex Foliations and Asymptotically Flat Metrics of Non-negative Scalar Curvature Communications in Analysis and Geometry. ,vol. 12, pp. 511- 551 ,(2004) , 10.4310/CAG.2004.V12.N3.A2
Robert Bartnik, New definition of quasilocal mass. Physical Review Letters. ,vol. 62, pp. 2346- 2348 ,(1989) , 10.1103/PHYSREVLETT.62.2346