On faithfulness of the lifting for Hopf algebras and fusion categories

作者: Pavel Etingof

DOI: 10.2140/ANT.2018.12.551

关键词:

摘要: We use a version of Haboush's theorem over complete local Noetherian rings to prove faithfulness the lifting for semisimple cosemisimple Hopf algebras and separable (braided, symmetric) fusion categories from characteristic $p$ zero (arXiv/math:0203060, Section 9), showing that, moreover, any isomorphism between such structures can be reduced modulo $p$. This fills gap in arXiv/math:0203060, Subsection 9.3. also show that is fully faithful functor, induces an on Picard Brauer-Picard groups. Finally, we subcategory or quotient category multifusion (resolving open question 9.4), this certain classes tensor functors lifts

参考文章(16)
Pavel Etingof, Shlomo Gelaki, Exact sequences of tensor categories with respect to a module category Advances in Mathematics. ,vol. 308, pp. 1187- 1208 ,(2017) , 10.1016/J.AIM.2016.12.021
Mark W. Johnson, Donald Y. Yau, A Foundation for Props, Algebras, and Modules ,(2015)
Christopher L. Douglas, Christopher Schommer-Pries, Noah Snyder, Dualizable tensor categories arXiv: Quantum Algebra. ,(2013)
Pavel Etingof, Shlomo Gelaki, The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field International Mathematics Research Notices. ,vol. 2000, pp. 223- 234 ,(2000) , 10.1155/S1073792800000131
C.S Seshadri, Geometric reductivity over arbitrary base Advances in Mathematics. ,vol. 26, pp. 225- 274 ,(1977) , 10.1016/0001-8708(77)90041-X
Dragoş Ştefan, The Set of Types ofn-Dimensional Semisimple and Cosemisimple Hopf Algebras Is Finite Journal of Algebra. ,vol. 193, pp. 571- 580 ,(1997) , 10.1006/JABR.1996.6991
W. J. Haboush, Reductive groups are geometrically reductive Annals of Mathematics. ,vol. 102, pp. 67- 83 ,(1975) , 10.2307/1970974
Richard G Larson, David E Radford, Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple Journal of Algebra. ,vol. 117, pp. 267- 289 ,(1988) , 10.1016/0021-8693(88)90107-X