Study of instability of the Fourier split-step method for the massive Gross–Neveu model

作者: T.I. Lakoba

DOI: 10.1016/J.JCP.2019.109100

关键词:

摘要: Abstract Stability properties of the well-known Fourier split-step method used to simulate a soliton and similar solutions nonlinear Dirac equations, known as Gross–Neveu model, are studied numerically analytically. Three distinct types numerical instability that can occur in this case, revealed explained. While one these be viewed being related occurring simulations Schrodinger equation, other two have not been or identified before, best our knowledge. These unconditional, i.e. for arbitrarily small values time step. They also persist continuum limit, fine spatial discretization. Moreover, them persists limit an infinitely large computational domain. It is further demonstrated instabilities methods applied soliton, well certain solitons another relativistic field theory massive Thirring.

参考文章(55)
V. E. Zakharov, Collapse of Langmuir Waves Journal of Experimental and Theoretical Physics. ,vol. 35, pp. 908- ,(1972)
Boris A. Malomed, William C. K. Mak, Pak L. Chu, Slowdown and splitting of gap solitons in apodized bragg gratings Journal of Modern Optics. ,vol. 51, pp. 2141- 2158 ,(2004) , 10.1080/09500340408232519
J. A. C. Weideman, B. M. Herbst, Split-step methods for the solution of the nonlinear Schro¨dinger equation SIAM Journal on Numerical Analysis. ,vol. 23, pp. 485- 507 ,(1986) , 10.1137/0723033
J de Frutos, J.M Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems Journal of Computational Physics. ,vol. 83, pp. 407- 423 ,(1989) , 10.1016/0021-9991(89)90127-7
P. K. Williams, Absorption weakening in production of higher-mass states Physical Review D. ,vol. 12, pp. 3572- 3574 ,(1975) , 10.1103/PHYSREVD.12.3572
Ludwig Gauckler, Christian Lubich, Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times Foundations of Computational Mathematics. ,vol. 10, pp. 275- 302 ,(2010) , 10.1007/S10208-010-9063-3
S. Y. Lee, T. K. Kuo, A. Gavrielides, Exact localized solutions of two-dimensional field theories of massive fermions with Fermi interactions Physical Review D. ,vol. 12, pp. 2249- 2253 ,(1975) , 10.1103/PHYSREVD.12.2249
Sihong Shao, Niurka R. Quintero, Franz G. Mertens, Fred Cooper, Avinash Khare, Avadh Saxena, Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity Physical Review E. ,vol. 90, pp. 032915- ,(2014) , 10.1103/PHYSREVE.90.032915
Erwan Faou, Benoît Grébert, Eric Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part I. Finite-dimensional discretization Numerische Mathematik. ,vol. 114, pp. 429- 458 ,(2009) , 10.1007/S00211-009-0258-Y
Francisco de la Hoz, Fernando Vadillo, An integrating factor for nonlinear Dirac equations Computer Physics Communications. ,vol. 181, pp. 1195- 1203 ,(2010) , 10.1016/J.CPC.2010.03.004