Chapter 3 Murine Models of Holoprosencephaly

作者: Karen A. Schachter , Robert S. Krauss

DOI: 10.1016/S0070-2153(08)00603-0

关键词:

摘要: Holoprosencephaly (HPE), the most common developmental defect of forebrain and midface, is caused by a failure to delineate midline in these structures. Both genetic environmental etiologies exist for HPE, clinical presentation highly variable. HPE occurs sporadic inherited forms, even pedigrees characterized incomplete penetrance variable expressivity. Heterozygous mutations eight different genes have been identified human disruption Sonic hedgehog expression and/or signaling rostroventral region embryo major effect mutations. An understanding mechanisms whereby defects teratogenic exposures become manifest as anomalies varying severity requires experimental models that accurately reproduce spectrum seen HPE. The mouse has emerged such model, because its ease manipulation similarity humans development face. generally observed mice homozygous orthologs though, unlike humans, rarely with heterozygous Moreover, reverse genetics provided wealth new candidate genes. Construction hypomorphic alleles, interbreeding produce double mutants, analysis on backgrounds generated multiple begun provide insight into conundrum spectrum. Here, we review an emphasis pathways known be defective describe strengths weaknesses various murine

参考文章(157)
Can Schell-Apacik, Mariel Rivero, Jessica L. Knepper, Erich Roessler, Maximilian Muenke, Jeffrey E. Ming, SONIC HEDGEHOG mutations causing human holoprosencephaly impair neural patterning activity. Human Genetics. ,vol. 113, pp. 170- 177 ,(2003) , 10.1007/S00439-003-0950-4
F Majewski, Alcohol embryopathy: some facts and speculations about pathogenesis. Neurobehavioral toxicology and teratology. ,vol. 3, pp. 129- 144 ,(1981)
E. Roessler, M. Muenke, Holoprosencephaly: a paradigm for the complex genetics of brain development. Journal of Inherited Metabolic Disease. ,vol. 21, pp. 481- 497 ,(1998) , 10.1023/A:1005406719292
Masatoshi Nomura, En Li, Smad2 role in mesoderm formation, left-right patterning and craniofacial development Nature. ,vol. 393, pp. 786- 790 ,(1998) , 10.1038/31693
Jean M. Hébert, Unraveling the molecular pathways that regulate early telencephalon development. Current Topics in Developmental Biology. ,vol. 69, pp. 17- 37 ,(2005) , 10.1016/S0070-2153(05)69002-3
K K Sulik, M C Johnston, Embryonic origin of holoprosencephaly: interrelationship of the developing brain and face. Scanning electron microscopy. ,vol. 1982, pp. 309- 322 ,(1982)
Karen W. Gripp, David Wotton, Michael C. Edwards, Erich Roessler, Lesley Ades, Peter Meinecke, Antonio Richieri-Costa, Elaine H. Zackai, Joan Massagué, Maximilian Muenke, Stephen J. Elledge, Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination Nature Genetics. ,vol. 25, pp. 205- 208 ,(2000) , 10.1038/76074
J. Peiffer, F. Majewski, H. Fischbach, J.R. Bierich, B. Volk, Alcohol embryo- and fetopathy Journal of the Neurological Sciences. ,vol. 41, pp. 125- 137 ,(1979) , 10.1016/0022-510X(79)90033-9
E Rubin, M L Giknis, I Damjanov, The differential transplacental effects of ethanol in four mouse strains. pp. 235- ,(1980)
Daniel Bachiller, John Klingensmith, C. Kemp, J. A. Belo, R. M. Anderson, S. R. May, J. A. McMahon, A. P. McMahon, R. M. Harland, J. Rossant, E. M. De Robertis, The organizer factors Chordin and Noggin are required for mouse forebrain development Nature. ,vol. 403, pp. 658- 661 ,(2000) , 10.1038/35001072