Regularization methods for optimization problems with probabilistic constraints

作者: Darinka Dentcheva , Gabriela Martinez

DOI: 10.1007/S10107-012-0539-6

关键词:

摘要: We analyze nonlinear stochastic optimization problems with probabilistic constraints on inequalities random right hand sides. develop two numerical methods regularization for their solution. The are based first order optimality conditions and successive inner approximations of the feasible set by progressive generation p-efficient points. algorithms yield an optimal solution involving α-concave probability distributions. For arbitrary distributions, solve convex hull problem provide upper lower bounds value nearly solutions. compared numerically to cutting plane methods.

参考文章(31)
Claudia A. Sagastizábal, J. Frédéric Bonnans, Claude Lemaréchal, Jean Charles Gilbert, Numerical Optimization: Theoretical and Practical Aspects (Universitext) Springer-Verlag New York, Inc.. ,(2006)
Yuri Kan, Application of the quantile optimization to bond portfolio selection Lecture Notes in Economics and Mathematical Systems. pp. 285- 308 ,(2002)
B. Bank, J. Guddat, D. Klatte, B. Kummer, K. Tammer, On Procedures for Analysing Parametric Optimization Problems Birkhäuser, Basel. pp. 154- 186 ,(1982) , 10.1007/978-3-0348-6328-5_6
Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude Lemaréchal, Claudia A Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects ,(2003)
Stanislav P. Uryasev, Probabilistic constrained optimization : methodology and applications Kluwer Academic Publishers. ,(2000)
René Henrion, Some remarks on value-at-risk optimization international journal of management science and engineering management. ,vol. 1, pp. 111- 118 ,(2006) , 10.1080/17509653.2006.10671002
Darinka Dentcheva, Alexander Shapiro, Andrzej P. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory ,(2009)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
James Luedtke, Shabbir Ahmed, George L. Nemhauser, An integer programming approach for linear programs with probabilistic constraints Mathematical Programming. ,vol. 122, pp. 247- 272 ,(2009) , 10.1007/S10107-008-0247-4