DCMIP2016: the splitting supercell test case

作者: Colin M. Zarzycki , Christiane Jablonowski , James Kent , Peter H. Lauritzen , Ramachandran Nair

DOI: 10.5194/GMD-12-879-2019

关键词:

摘要: Abstract. This paper describes the splitting supercell idealized test case used in 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). These storms are useful beds for global atmospheric models because the horizontal scale of convective plumes is O(1 km), emphasizing non-hydrostatic dynamics. The case simulates a on a reduced-radius sphere with nominal resolutions ranging from 4 to 0.5 km and based on work Klemp et al. ( 2015 ) . Models initialized an atmospheric environment conducive formation forced a small thermal perturbation. A simplified Kessler microphysics scheme is coupled dynamical core represent moist processes. Reference solutions DCMIP2016 presented. Storm evolution broadly similar between models, although differences final solution exist. These differences hypothesized result different numerical discretizations, physics–dynamics coupling, numerical diffusion. Intramodel solutions generally converge as approach 0.5 km resolution, exploratory simulations at 0.25 km imply some dynamical cores require more refinement fully converge. These results can be used as a reference future evaluation, particularly the development non-hydrostatic intended in convective-permitting regimes.

参考文章(26)
Christopher Church, David Burgess, Charles Doswell, Robert Davies-Jones, The Tornado : its structure, dynamics, prediction, and hazards Geophysical monograph. ,vol. 79, pp. 637- ,(1993) , 10.1029/GM079
Charles A. Doswell, Donald W. Burgess, Tornadoes and Toraadic Storms: a Review of Conceptual Models The Tornado: Its Structure, Dynamics, Prediction, and Hazards. ,vol. 79, pp. 161- 172 ,(2013) , 10.1029/GM079P0161
Edwin Kessler, On the Distribution and Continuity of Water Substance in Atmospheric Circulations On the Distribution and Continuity of Water Substance in Atmospheric Circulations. ,vol. 32, pp. 1- 84 ,(1969) , 10.1007/978-1-935704-36-2_1
Diana R. Thatcher, Christiane Jablonowski, A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores Geoscientific Model Development. ,vol. 9, pp. 1263- 1292 ,(2016) , 10.5194/GMD-9-1263-2016
K. A. Reed, J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, C. Hannay, Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model Geophysical Research Letters. ,vol. 42, pp. 3603- 3608 ,(2015) , 10.1002/2015GL063974
J. B. Klemp, W. C. Skamarock, S.-H. Park, Idealized global nonhydrostatic atmospheric test cases on a reduced‐radius sphere Journal of Advances in Modeling Earth Systems. ,vol. 7, pp. 1155- 1177 ,(2015) , 10.1002/2015MS000435
William A. Gallus, James F. Bresch, Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts Monthly Weather Review. ,vol. 134, pp. 2632- 2641 ,(2006) , 10.1175/MWR3198.1
Corey K. Potvin, Montgomery L. Flora, Sensitivity of Idealized Supercell Simulations to Horizontal Grid Spacing: Implications for Warn-on-Forecast Monthly Weather Review. ,vol. 143, pp. 2998- 3024 ,(2015) , 10.1175/MWR-D-14-00416.1
Nils P. Wedi, Piotr K. Smolarkiewicz, A framework for testing global non-hydrostatic models Quarterly Journal of the Royal Meteorological Society. ,vol. 135, pp. 469- 484 ,(2009) , 10.1002/QJ.377
Richard Rotunno, Joseph B. Klemp, The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion Monthly Weather Review. ,vol. 110, pp. 136- 151 ,(1982) , 10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2