Polyhedra obtained from Coxeter groups and quaternions

作者: Mehmet Koca , Mudhahir Al-Ajmi , Ramazan Koç , None

DOI: 10.1063/1.2809467

关键词:

摘要: We note that all regular and semiregular polytopes in arbitrary dimensions can be obtained from the Coxeter-Dynkin diagrams. The vertices of a or polytope are weights as orbit Coxeter-Weyl group acting on highest weight representing selected irreducible representation Lie group. This paper, particular, deals with determination Platonic Archimedean solids Coxeter diagrams A3, B3, H3 context quaternionic representations root systems groups. use algebraic techniques derivation polyhedra show possessing tetrahedral, octahedral, icosahedral symmetries related to groups H3, respectively. technique leads except two chiral polyhedra, snubcuboctahedr...

参考文章(23)
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C 60 : Buckminsterfullerene Nature. ,vol. 318, pp. 162- 163 ,(1985) , 10.1038/318162A0
Peter McMullen, Egon Schulte, Abstract Regular Polytopes ,(2003)
John H. Conway, On Quaternions and Octonions ,(2003)
H. S. M. Coxeter, Regular Complex Polytopes ,(1991)
Mehmet Koca, Ramazan Koc, Muataz Al-Barwani, None, Noncrystallographic Coxeter groupH4inE8 Journal of Physics A: Mathematical and General. ,vol. 34, pp. 11201- 11213 ,(2001) , 10.1088/0305-4470/34/50/303
B. Champagne, M. Kjiri, J. Patera, R. T. Sharp, Description of reflection-generated polytopes using decorated Coxeter diagrams Canadian Journal of Physics. ,vol. 73, pp. 566- 584 ,(1995) , 10.1139/P95-084
D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry Physical Review Letters. ,vol. 53, pp. 1951- 1953 ,(1984) , 10.1103/PHYSREVLETT.53.1951