Multilevel functional principal component analysis

作者:

DOI: 10.1214/08-AOAS206SUPP

关键词:

摘要: The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric the SHHS in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at visits. volume importance this data presents enormous challenges analysis. To address these challenges, we introduce multilevel functional principal component analysis (MFPCA), novel statistical methodology designed to extract core intra- inter-subject geometric components data. Though motivated by SHHS, proposed generally applicable, with potential relevance many modern scientific studies hierarchical or longitudinal Notably, using MFPCA, identify quantify associations between EEG activity during adverse cardiovascular

参考文章(39)
Kari Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung Suomalainen Tiedeakatemia. ,(1947)
Daniel P. Redmond, David R. Thorne, Michael B. Russo, Helen C. Sing, Stanley W. Hall, Joshua Bailey, Kimberly Warren, Dagny E. Johnson, Mary A. Kautz, High-frequency EEG as measure of cognitive function capacity: a preliminary report. Aviation, Space, and Environmental Medicine. ,vol. 76, ,(2005)
J. O. Ramsay, C. J. Dalzell, Some Tools for Functional Data Analysis Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 539- 561 ,(1991) , 10.1111/J.2517-6161.1991.TB01844.X
John A. Rice, B. W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 233- 243 ,(1991) , 10.1111/J.2517-6161.1991.TB01821.X
Peter J. Diggle, The analysis of longitudinal data ,(2002)
Raymond J Carroll, David Ruppert, Leonard A Stefanski, Ciprian M Crainiceanu, Measurement error in nonlinear models: a modern perspective Chapman & Hall/CRC. ,(2006)
Jianqing Fan, Irène Gijbels, Local polynomial modelling and its applications ,(1994)
Jamie L Bigelow, David B Dunson, None, Bayesian Adaptive Regression Splines for Hierarchical Data Biometrics. ,vol. 63, pp. 724- 732 ,(2007) , 10.1111/J.1541-0420.2007.00761.X
Bernard W. Silverman, Smoothed functional principal components analysis by choice of norm Annals of Statistics. ,vol. 24, pp. 1- 24 ,(1996) , 10.1214/AOS/1033066196