Use of biplots and partial least squares regression in microarray data analysis for assessing association between genes involved in different biological pathways

作者: Niccoló Bassani , Federico Ambrogi , Danila Coradini , Elia Biganzoli

DOI: 10.1007/978-3-642-21946-7_10

关键词:

摘要: Microarrays are widely used to study expression profiles for thousand of transcripts simultaneously and explore interrelationships between sets genes. Visualization techniques Partial Least Squares (PLS) regression have thus gained relevance in genomic. Biplots provide an aid understand relationships genes samples among genes, whereas passive projections variables helpful understanding conditional be quantitatively evaluated via PLS regression. 62 involved loss cell polarity 8 Epithelial-Mesenchymal Transition (EMT), were selected from a on 49 mesothelioma samples, analysis considered EMT as conditioning conditioned variables. results consistent with the PCA-based biplot genes. Future work will address sparsity PCA regression. path modeling after specification detailed dependency network.

参考文章(14)
Richard M Simon, Edward L Korn, Lisa M McShane, Michael D Radmacher, George W Wright, Yingdong Zhao, Design and Analysis of DNA Microarray Investigations ,(2003)
W. N. Venables, B. D. Ripley, Modern Applied Statistics with S Springer. ,(2010) , 10.1007/978-0-387-21706-2
Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse Principal Component Analysis Journal of Computational and Graphical Statistics. ,vol. 15, pp. 265- 286 ,(2006) , 10.1198/106186006X113430
Haipeng Shen, Jianhua Z. Huang, Sparse principal component analysis via regularized low rank matrix approximation Journal of Multivariate Analysis. ,vol. 99, pp. 1015- 1034 ,(2008) , 10.1016/J.JMVA.2007.06.007
Maurice G. Kendall, A course in multivariate analysis ,(1957)
Svante Wold, Michael Sjöström, Lennart Eriksson, PLS-regression: a basic tool of chemometrics Chemometrics and Intelligent Laboratory Systems. ,vol. 58, pp. 109- 130 ,(2001) , 10.1016/S0169-7439(01)00155-1
A.-L. Boulesteix, K. Strimmer, Partial least squares: a versatile tool for the analysis of high-dimensional genomic data Briefings in Bioinformatics. ,vol. 8, pp. 32- 44 ,(2006) , 10.1093/BIB/BBL016
S. Chapman, P. Schenk, K. Kazan, J. Manners, Using biplots to interpret gene expression patterns in plants Bioinformatics. ,vol. 18, pp. 202- 204 ,(2002) , 10.1093/BIOINFORMATICS/18.1.202