Triangulations of Line Segment Sets in the Plane

作者: Mathieu Brévilliers , Nicolas Chevallier , Dominique Schmitt

DOI: 10.1007/978-3-540-77050-3_32

关键词:

摘要: Given a set S of line segments in the plane, we introduce new family partitions convex hull called segment triangulations S. The faces such triangulation is maximal disjoint triangles that cut at, and only their vertices. Surprisingly, several properties point extend to triangulations. Thus, number an invariant In same way, if general position, there exists unique whose are inscribable circles interiors do not intersect This triangulation, Delaunay dual Voronoi diagram. main result this paper local optimality which characterizes [10] extends A similar holds for with topology as one.

参考文章(19)
C. L. Lawson, Software for C1 Surface Interpolation Mathematical Software#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, March 28–30, 1977. pp. 161- 194 ,(1977) , 10.1016/B978-0-12-587260-7.50011-X
J.-R. Sack, J. Urrutia, Handbook of computational geometry North-Holland Publishing Co.. ,(2000)
Francisco Santos, Ileana Streinu, Guenter Rote, Pseudo-Triangulations - a Survey arXiv: Combinatorics. ,(2006)
MARSHALL BERN, DAVID EPPSTEIN, MESH GENERATION AND OPTIMAL TRIANGULATION WORLD SCIENTIFIC. pp. 23- 90 ,(1992) , 10.1142/9789812831699_0003
Oswin Aichholzer, Franz Aurenhammer, Thomas Hackl, Pre-triangulations and liftable complexes Proceedings of the twenty-second annual symposium on Computational geometry - SCG '06. pp. 282- 291 ,(2006) , 10.1145/1137856.1137899
Vladlen Koltun, Micha Sharir, Three dimensional euclidean Voronoi diagrams of lines with a fixed number of orientations Proceedings of the eighteenth annual symposium on Computational geometry - SCG '02. pp. 217- 226 ,(2002) , 10.1145/513400.513427
Herbert Edelsbrunner, Triangulations and meshes in computational geometry Acta Numerica. ,vol. 9, pp. 133- 213 ,(2000) , 10.1017/S0962492900001331
D. T. Lee, A. K. Lin, Generalized delaunay triangulation for planar graphs Discrete & Computational Geometry. ,vol. 1, pp. 201- 217 ,(1986) , 10.1007/BF02187695
V. T. Rajan, Optimality of the Delaunay triangulation in źd Discrete and Computational Geometry. ,vol. 12, pp. 189- 202 ,(1994) , 10.1007/BF02574375
Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, Roberto Tamassia, Checking the convexity of polytopes and the planarity of subdivision Computational Geometry: Theory and Applications. ,vol. 11, pp. 187- 208 ,(1998) , 10.1016/S0925-7721(98)00039-X