Maximum penalized likelihood estimation in semiparametric mark-recapture-recovery models

作者: Théo Michelot , Roland Langrock , Thomas Kneib , Ruth King

DOI: 10.1002/BIMJ.201400222

关键词:

摘要: We discuss the semiparametric modeling of mark-recapture-recovery data where temporal and/or individual variation model parameters is explained via covariates. Typically, in such analyses a fixed (or mixed) effects parametric specified for relationship between and covariates interest. In this paper, we use penalized splines, to allow considerably more flexible functional forms. Corresponding models can be fitted numerical maximum likelihood estimation, employing cross-validation choose smoothing data-driven way. Our contribution builds on extends existing literature, providing unified inferential framework open populations, interest typically lies estimation survival probabilities. The approach applied two real datasets, corresponding gray herons (Ardea cinerea), probability as function environmental condition (a time-varying global covariate), Soay sheep (Ovis aries), weight individual-specific covariate). proposed compared standard (logistic) regression new interesting underlying dynamics are observed both cases.

参考文章(45)
Shirley Pledger, Murray Efford, Kenneth Pollock, Jaime Collazo, James Lyons, Stopover Duration Analysis with Departure Probability Dependent on Unknown Time Since Arrival Springer, Boston, MA. pp. 349- 363 ,(2009) , 10.1007/978-0-387-78151-8_15
Ruth King, Roland Langrock, Semi-Markov Arnason-Schwarz models Biometrics. ,vol. 72, pp. 619- 628 ,(2016) , 10.1111/BIOM.12446
David Ruppert, M. P. Wand, R. J. Carroll, Semiparametric Regression: Example Index ,(2003) , 10.1017/CBO9780511755453
Rachel S. McCrea, Byron J. T. Morgan, Analysis of Capture-Recapture Data ,(2014)
Jakub Stoklosa, Richard M. Huggins, Cormack-Jolly-Seber model with environmental covariates: a P-spline approach. Biometrical Journal. ,vol. 54, pp. 861- 874 ,(2012) , 10.1002/BIMJ.201100215
Walter Zucchini, Iain L. MacDonald, Roland Langrock, Hidden Markov Models for Time Series: An Introduction Using R ,(2009)
Ruth King, Byron Morgan, Olivier Gimenez, Steve Brooks, Bayesian Analysis for Population Ecology ,(2009)