Notes on Space- and Velocity-jump Models of Biological Movement

作者: Hans G. Othmer

DOI:

关键词:

摘要: 5 Velocity Jump Processes 17 5.1 The telegraph process in one space dimension . 18 5.2 general velocity-jump 20 5.3 unbiased walk 21 5.4 A biased the presence of a chemotactic gradient 24 5.5 Inclusion resting phase 26

参考文章(31)
Pierre M. V. Résibois, M. de Leener, Classical kinetic theory of fluids ,(1977)
Karl Oelschl�ger, A fluctuation theorem for moderately interacting diffusion processes Probability Theory and Related Fields. ,vol. 74, pp. 591- 616 ,(1987) , 10.1007/BF00363518
David Vernon Widder, The Laplace Transform ,(1941)
Samuel Karlin, Howard M Taylor, A first course in stochastic processes ,(1966)
Radek Erban, Hans G. Othmer, Taxis Equations for Amoeboid Cells Journal of Mathematical Biology. ,vol. 54, pp. 847- 885 ,(2007) , 10.1007/S00285-007-0070-1
H. G. Othmer, S. R. Dunbar, W. Alt, Models of dispersal in biological systems Journal of Mathematical Biology. ,vol. 26, pp. 263- 298 ,(1988) , 10.1007/BF00277392
Hans G. Othmer, Thomas Hillen, The diffusion limit of transport equations derived from velocity-jump processes Siam Journal on Applied Mathematics. ,vol. 61, pp. 751- 775 ,(2000) , 10.1137/S0036139999358167
Angela Stevens, Hans G. Othmer, Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks SIAM Journal on Applied Mathematics. ,vol. 57, pp. 1044- 1081 ,(1997) , 10.1137/S0036139995288976