Uniform convergence on a Bakhvalov-type mesh using the preconditioning approach: Technical report

作者: Relja Vulanovic , Thai Anh Nhan

DOI:

关键词:

摘要: The linear singularly perturbed convection-diffusion problem in one dimension is considered and its discretization on a Bakhvalov-type mesh analyzed. preconditioning technique used to obtain the pointwise convergence uniform perturbation parameter.

参考文章(9)
HANS-GäRG ROOS, A note on the conditioning of upwind schemes on Shishkin meshes Ima Journal of Numerical Analysis. ,vol. 16, pp. 529- 538 ,(1996) , 10.1093/IMANUM/16.4.529
R. Bruce Kellogg, Alice Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points Mathematics of Computation. ,vol. 32, pp. 1025- 1039 ,(1978) , 10.1090/S0025-5718-1978-0483484-9
N.S. Bakhvalov, The optimization of methods of solving boundary value problems with a boundary layer USSR Computational Mathematics and Mathematical Physics. ,vol. 9, pp. 139- 166 ,(1969) , 10.1016/0041-5553(69)90038-X
R. Vulanovic, A priori meshes for singularly perturbed quasilinear two‐point boundary value problems Ima Journal of Numerical Analysis. ,vol. 21, pp. 349- 366 ,(2001) , 10.1093/IMANUM/21.1.349
Thái Anh Nhan, Relja Vulanović, Preconditioning and Uniform Convergence for Convection-Diffusion Problems Discretized on Shishkin-Type Meshes Advances in Numerical Analysis. ,vol. 2016, pp. 1- 11 ,(2016) , 10.1155/2016/2161279
Anh Nhan, Relja Vulanovi, UNIFORM CONVERGENCE VIA PRECONDITIONING ,(2014)