Predictions of USA Presidential Parties From 2021 to 2037 Using Historical Data Through Square Wave-Activated WASD Neural Network

作者: Tianyu Zeng , Yunong Zhang , Zhenyu Li , Binbin Qiu , Chengxu Ye

DOI: 10.1109/ACCESS.2020.2982192

关键词:

摘要: … For this problem, the historical data of the presidential parties in the USA are encoded and visualized in Figure 2. Let 1 denote the terms when the Democratic Party comes into power, …

参考文章(20)
Geoffrey C. Layman, The great divide : religious and cultural conflict in American party politics Columbia University Press. ,(2001)
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Yunong Zhang, Yonghua Yin, Dongsheng Guo, Xiaotian Yu, Lin Xiao, Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification Pattern Recognition. ,vol. 47, pp. 3414- 3428 ,(2014) , 10.1016/J.PATCOG.2014.04.026
Alan I. Abramowitz, Forecasting the 2008 Presidential Election with the Time-for-Change Model PS Political Science & Politics. ,vol. 41, pp. 691- 695 ,(2008) , 10.1017/S1049096508081249
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Gary Miller, Norman Schofield, The Transformation of the Republican and Democratic Party Coalitions in the U.S. Perspectives on Politics. ,vol. 6, pp. 433- 450 ,(2008) , 10.1017/S1537592708081218
Polina Khrennikova, Quantum Like Modelling of the Nonseparability of Voters’ Preferences in the U.S. Political System International Symposium on Quantum Interaction. pp. 196- 209 ,(2014) , 10.1007/978-3-319-15931-7_16
Zhang Yunong, Deng Jianhao, Lao Wenchao, Wang Ru, Signum-Function-Activated WASD Neuronet and Its XOR Application Acta Scientiarum Naturalium Universitatis Sunyatseni. ,vol. 53, pp. 1- ,(2014)
Yunong Zhang, Sitong Ding, Jianfeng Wen, Yaqiong Ding, Mingzhi Mao, Combining WASP and ASF algorithms to forecast a Japan earthquake with Mj 7.2 or above world congress on intelligent control and automation. pp. 2407- 2413 ,(2016) , 10.1109/WCICA.2016.7578582