Bunching of cars in asymmetric exclusion models for freeway traffic

作者: Takashi Nagatani

DOI: 10.1103/PHYSREVE.51.922

关键词:

摘要: One-dimensional cellular automaton (CA) models are presented to simulate bunching of cars in freeway traffic. The CA three extended versions the asymmetric simple-exclusion model with parallel dynamics. In I, inherent velocities individual taken into account. It is shown that occurs since car low velocity prevents high from going ahead. mean interval 〈\ensuremath{\Delta}x〉 consecutive scales as 〈\ensuremath{\Delta}x〉\ensuremath{\approxeq}${\mathit{t}}^{0.47\ifmmode\pm\else\textpm\fi{}0.03}$ where t time. II, exclusion take account dependence transition probability T upon \ensuremath{\Delta}x particles (cars): T=\ensuremath{\Delta}${\mathit{x}}^{\mathrm{\ensuremath{-}}\mathrm{\ensuremath{\alpha}}}$ (\ensuremath{\alpha}\ensuremath{\ge}0). 〈\ensuremath{\Delta}x〉\ensuremath{\approxeq}${\mathit{t}}^{1/(1+\mathrm{\ensuremath{\alpha}})}$ by cars. III, v a depends on such manner T=1 for \ensuremath{\Delta}xg${\mathit{x}}_{\mathit{c}}$ (${\mathit{x}}_{\mathit{c}}$\ensuremath{\ge}1), and \ensuremath{\Delta}x\ensuremath{\le}${\mathit{x}}_{\mathit{c}}$, T=(\ensuremath{\Delta}x/${\mathit{x}}_{\mathit{c}}$${)}^{\mathrm{\ensuremath{\alpha}}}$. laminar traffic flow (uncongested flow) congested increasing density p

参考文章(20)
B Derrida, M R Evans, V Hakim, V Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation Journal of Physics A. ,vol. 26, pp. 1493- 1517 ,(1993) , 10.1088/0305-4470/26/7/011
Leh-Hun Gwa, Herbert Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Physical Review Letters. ,vol. 68, pp. 725- 728 ,(1992) , 10.1103/PHYSREVLETT.68.725
Steven A. Janowsky, Joel L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process Physical Review A. ,vol. 45, pp. 618- 625 ,(1992) , 10.1103/PHYSREVA.45.618
Maury Bramson, Front propagation in certain one-dimensional exclusion models Journal of Statistical Physics. ,vol. 51, pp. 863- 869 ,(1988) , 10.1007/BF01014888
Paul Meakin, P. Ramanlal, L. M. Sander, R. C. Ball, Ballistic deposition on surfaces. Physical Review A. ,vol. 34, pp. 5091- 5103 ,(1986) , 10.1103/PHYSREVA.34.5091
J. Krug, H. Spohn, Universality classes for deterministic surface growth. Physical Review A. ,vol. 38, pp. 4271- 4283 ,(1988) , 10.1103/PHYSREVA.38.4271
Ofer Biham, A. Alan Middleton, Dov Levine, Self-organization and a dynamical transition in traffic-flow models. Physical Review A. ,vol. 46, ,(1992) , 10.1103/PHYSREVA.46.R6124
Minoru Fukui, Yoshihiro Ishibashi, Evolution of Traffic Jam in Traffic Flow Model Journal of the Physical Society of Japan. ,vol. 62, pp. 3841- 3844 ,(1993) , 10.1143/JPSJ.62.3841
Takashi Nagatani, Jamming transition in the traffic-flow model with two-level crossings Physical Review E. ,vol. 48, pp. 3290- 3294 ,(1993) , 10.1103/PHYSREVE.48.3290
José A. Cuesta, Froilán C. Martínez, Juan M. Molera, Angel Sánchez, Phase transitions in two-dimensional traffic-flow models Physical Review E. ,vol. 48, ,(1993) , 10.1103/PHYSREVE.48.R4175