Traces on module categories over fusion categories

作者: Gregor Schaumann

DOI: 10.1016/J.JALGEBRA.2013.01.013

关键词:

摘要: Abstract We consider traces on module categories over pivotal fusion which are compatible with the structure. It is shown that such characterise Morita classes of special haploid Frobenius algebras. Moreover, they unique up to a scale factor and equip dual category This implies for each structure C there exists conjugate defined by canonical trace.

参考文章(25)
John W. Barrett, Bruce W. Westbury, Invariants of piecewise-linear 3-manifolds Transactions of the American Mathematical Society. ,vol. 348, pp. 3997- 4022 ,(1996) , 10.1090/S0002-9947-96-01660-1
Vladimir G. Turaev, Quantum invariants of knots and 3-manifolds arXiv: High Energy Physics - Theory. ,(1994) , 10.1515/9783110221848
Justin Greenough, Bimodule categories and monoidal 2-structure PhDT. ,(2010)
Bojko Bakalov, Alexander Kirillov, Lectures on tensor categories and modular functors American Mathematical Society. ,vol. 21, ,(2000) , 10.1090/ULECT/021
C. Schweigert, Jürgen Fuchs, Category theory for conformal boundary conditions arXiv: Category Theory. ,(2003)
Gregor Schaumann, Pivotal tricategories and a categorification of inner-product modules arXiv: Quantum Algebra. ,(2014)
Pavel Etingof, Dmitri Nikshych, Viktor Ostrik, An analogue of Radford's S4 formula for finite tensor categories International Mathematics Research Notices. ,vol. 2004, pp. 2915- 2933 ,(2004) , 10.1155/S1073792804141445
TOBIAS J. HAGGE, SEUNG-MOON HONG, Some non-braided fusion categories of rank three Communications in Contemporary Mathematics. ,vol. 11, pp. 615- 637 ,(2009) , 10.1142/S0219199709003521
N. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups Inventiones Mathematicae. ,vol. 103, pp. 547- 597 ,(1991) , 10.1007/BF01239527