Pathways of arsenic from sediments to groundwater in the hyporheic zone: Evidence from an iron isotope study

作者: Xianjun Xie , Thomas M. Johnson , Yanxin Wang , Craig C. Lundstrom , Andre Ellis

DOI: 10.1016/J.JHYDROL.2014.02.006

关键词:

摘要: Summary Ssulfide, Fe content and heavy isotopic signatures of the bulk core sediments all indicate anoxic sulfidic conditions in hyporheic zone. The relationship between Ssulfide contents suggests that Fe(III) oxides/hydroxides are transferred non-sulfidic Fe(II) minerals Fe(II)-sulfides under conditions, respectively. isotope composition provides further evidence microbial dissimilatory reduction formation dominant geochemical pathways take place at different depths In upper sections Core A B (with depth less than ≈10 m), govern cycling water sediments. Microbial SO 4 2 - interaction produced Fe(II)aq precipitate control δ56Fe values sample midsections (≈13–19 m) A. Conversely, abiotic by HS− determines B. is limited controls bottom both cores. variation As concentration similar each depth, indicating enrichment strongly associated with minerals. enriched-δ56Fe high concentrations suggest process promotes mobility zones.

参考文章(48)
Robert L Runkel, Diane M McKnight, Harihar Rajaram, Modeling hyporheic zone processes Advances in Water Resources. ,vol. 26, pp. 901- 905 ,(2003) , 10.1016/S0309-1708(03)00079-4
Brian L. Beard, Clark M. Johnson, Karen L. Von Damm, Rebecca L. Poulson, Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans Geology. ,vol. 31, pp. 629- 632 ,(2003) , 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2
Mariëtte Wolthers, Laurent Charlet, Cornelis H. van Der Weijden, Peter R. van der Linde, David Rickard, Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite Geochimica et Cosmochimica Acta. ,vol. 69, pp. 3483- 3492 ,(2005) , 10.1016/J.GCA.2005.03.003
B. Cancès, F. Juillot, G. Morin, V. Laperche, D. Polya, D.J. Vaughan, J.-L. Hazemann, O. Proux, G.E. Brown, G. Calas, Changes in arsenic speciation through a contaminated soil profile: A XAS based study Science of The Total Environment. ,vol. 397, pp. 178- 189 ,(2008) , 10.1016/J.SCITOTENV.2008.02.023
G.A. Icopini, A.D. Anbar, S.S. Ruebush, M. Tien, S.L. Brantley, Iron isotope fractionation during microbial reduction of iron: The importance of adsorption Geology. ,vol. 32, pp. 205- 208 ,(2004) , 10.1130/G20184.1
Georges Ona-Nguema, Guillaume Morin, Farid Juillot, Georges Calas, Gordon E. Brown, EXAFS Analysis of Arsenite Adsorption onto Two-Line Ferrihydrite, Hematite, Goethite, and Lepidocrocite Environmental Science & Technology. ,vol. 39, pp. 9147- 9155 ,(2005) , 10.1021/ES050889P
Shaofeng Wang, Liying Xu, Zhixi Zhao, Shuying Wang, Yongfeng Jia, He Wang, Xin Wang, Arsenic retention and remobilization in muddy sediments with high iron and sulfur contents from a heavily contaminated estuary in China Chemical Geology. ,vol. 314, pp. 57- 65 ,(2012) , 10.1016/J.CHEMGEO.2012.05.005
Xianjun Xie, Thomas M. Johnson, Yanxin Wang, Craig C. Lundstrom, Andre Ellis, Xiangli Wang, Mengyu Duan, Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data Chemosphere. ,vol. 90, pp. 1878- 1884 ,(2013) , 10.1016/J.CHEMOSPHERE.2012.10.012
Xianjun Xie, Yanxin Wang, Chunli Su, Huaiqing Liu, Mengyu Duan, Zuoming Xie, Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences Journal of Geochemical Exploration. ,vol. 98, pp. 107- 115 ,(2008) , 10.1016/J.GEXPLO.2008.01.002