Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets.

作者: Archana Singh-Manoux , Archana Singh-Manoux , Mika Kivimäki , Klaus P Ebmeier , Enikő Zsoldos

DOI: 10.1016/J.NEUROIMAGE.2021.118189

关键词:

摘要: Large scale neuroimaging datasets present the possibility of providing normative distributions for a wide variety markers, which would vastly improve clinical utility these measures. However, major challenge is our current poor ability to integrate measures across different large-scale datasets, due inconsistencies in imaging and non-imaging protocols populations. Here we explore harmonisation white matter hyperintensity (WMH) two studies healthy elderly populations, Whitehall II sub-study UK Biobank. We identify pre-processing strategies that maximise consistency utilise multivariate regression characterise study sample differences contributing WMH variations studies. also parser harmonise WMH-relevant variables datasets. show can provide highly calibrated from with: (1) inclusion number specific standardised processing steps; (2) appropriate modelling through alignment demographic, cognitive physiological variables. These results open up range applications WMHs other markers extensive databases data.

参考文章(41)
Stéphanie Debette, Alexa Beiser, Charles DeCarli, Rhoda Au, Jayandra J. Himali, Margaret Kelly-Hayes, Jose R. Romero, Carlos S. Kase, Philip A. Wolf, Sudha Seshadri, Association of MRI Markers of Vascular Brain Injury With Incident Stroke, Mild Cognitive Impairment, Dementia, and Mortality The Framingham Offspring Study Stroke. ,vol. 41, pp. 600- 606 ,(2010) , 10.1161/STROKEAHA.109.570044
Craig R. White, Allometric analysis beyond heterogeneous regression slopes: use of the Johnson-Neyman technique in comparative biology. Physiological and Biochemical Zoology. ,vol. 76, pp. 135- 140 ,(2003) , 10.1086/367939
Frithjof Kruggel, Jessica Turner, L Tugan Muftuler, Alzheimer's Disease Neuroimaging Initiative, Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. NeuroImage. ,vol. 49, pp. 2123- 2133 ,(2010) , 10.1016/J.NEUROIMAGE.2009.11.006
Martijn D. Steenwijk, Petra J.W. Pouwels, Marita Daams, Jan Willem van Dalen, Matthan W.A. Caan, Edo Richard, Frederik Barkhof, Hugo Vrenken, Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs) NeuroImage: Clinical. ,vol. 3, pp. 462- 469 ,(2013) , 10.1016/J.NICL.2013.10.003
Stephen M. Smith, Fast robust automated brain extraction Human Brain Mapping. ,vol. 17, pp. 143- 155 ,(2002) , 10.1002/HBM.10062
Petronella Anbeek, Koen L. Vincken, Matthias J.P. van Osch, Robertus H.C. Bisschops, Jeroen van der Grond, Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage. ,vol. 21, pp. 1037- 1044 ,(2004) , 10.1016/J.NEUROIMAGE.2003.10.012
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)
Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm IEEE Transactions on Medical Imaging. ,vol. 20, pp. 45- 57 ,(2001) , 10.1109/42.906424
Clifford R. Jack, Val J. Lowe, Matthew L. Senjem, Stephen D. Weigand, Bradley J. Kemp, Maria M. Shiung, David S. Knopman, Bradley F. Boeve, William E. Klunk, Chester A. Mathis, Ronald C. Petersen, 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain. ,vol. 131, pp. 665- 680 ,(2008) , 10.1093/BRAIN/AWM336
Mark Jenkinson, Stephen Smith, A global optimisation method for robust affine registration of brain images Medical Image Analysis. ,vol. 5, pp. 143- 156 ,(2001) , 10.1016/S1361-8415(01)00036-6