An equivalent crack growth model for creep fatigue life prediction of metals

作者: Dong Pan , Fraaz Tahir , Yongming Liu

DOI: 10.2514/6.2016-0930

关键词:

摘要: A new creep fatigue life prediction model based on the equivalent crack growth analysis is proposed in this paper. The existing observations propagation and void evolution mechanisms for some metallic materials. Equivalent initial are randomly distributed material their under creepfatigue loadings simulated. Pure rupture testing used to calibrate parameters. Arbitrary strainbased or stress-based creep-fatigue results validation. Experimental data from open literature in-house two metals compared with predictions. General good agreement observed. Some conclusions future work drawn study. Keyword: prediction, creep, fatigue, Nomenclature t = time th during hold ac length Cc parameter related mc N cycle σ stress Δe strain range af Cf mf ai,c size ai,f Thold total ac,c critical ac,f Dc damage fraction Df

参考文章(16)
Tarun Goswami,, A new creep-fatigue life prediction model High Temperature Materials and Processes. ,vol. 15, pp. 91- 96 ,(1996) , 10.1515/HTMP.1996.15.1-2.91
J. Lemaitre, A. Plumtree, Application of Damage Concepts to Predict Creep-Fatigue Failures Journal of Engineering Materials and Technology. ,vol. 101, pp. 284- 292 ,(1979) , 10.1115/1.3443689
R. W. Neu, Huseyin Sehitoglu, Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 20, pp. 1769- 1783 ,(1989) , 10.1007/BF02663208
Y LIU, S MAHADEVAN, Probabilistic fatigue life prediction using an equivalent initial flaw size distribution International Journal of Fatigue. ,vol. 31, pp. 476- 487 ,(2009) , 10.1016/J.IJFATIGUE.2008.06.005
Soo Woo Nam, Assessment of damage and life prediction of austenitic stainless steel under high temperature creep–fatigue interaction condition Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 322, pp. 64- 72 ,(2002) , 10.1016/S0921-5093(01)01118-2
Xiao-Li Yan, Xian-Cheng Zhang, Shan-Tung Tu, Sardari-Lal Mannan, Fu-Zhen Xuan, Yong-Cheng Lin, Review of creep–fatigue endurance and life prediction of 316 stainless steels International Journal of Pressure Vessels and Piping. ,vol. 126, pp. 17- 28 ,(2015) , 10.1016/J.IJPVP.2014.12.002
Xiang Chen, Zhiqing Yang, Mikhail A. Sokolov, Donald L. Erdman, Kun Mo, James F. Stubbins, Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 563, pp. 152- 162 ,(2013) , 10.1016/J.MSEA.2012.11.063
T Goswami, Low cycle fatigue life prediction—a new model International Journal of Fatigue. ,vol. 19, pp. 109- 115 ,(1997) , 10.1016/S0142-1123(96)00065-5
L.J. Carroll, C. Cabet, M.C. Carroll, R.N. Wright, The development of microstructural damage during high temperature creep–fatigue of a nickel alloy International Journal of Fatigue. ,vol. 47, pp. 115- 125 ,(2013) , 10.1016/J.IJFATIGUE.2012.07.016