Improvement of Moving Horizon Estimators via Direct Virtual Sensor techniques

作者: L. Fagiano , C. Novara

DOI: 10.1109/CDC.2011.6160497

关键词:

摘要: This paper presents a novel approach to the design of estimators for nonlinear systems. The proposed methodology is based on combination linear model-based Moving Horizon Estimation (MHE) and Direct Virtual Sensor (DVS) techniques. Stability designed estimator guaranteed convex constraints variables be estimated can easily taken into account. Moreover, optimality with respect an “ideal” MHE (obtained by assuming exact knowledge system dynamics global solution related program) analyzed. tested mass-spring-damper system.

参考文章(14)
Arthur Gelb, Applied Optimal Estimation ,(1974)
Sanjeev Arulampalam, Branko Ristic, Neil Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications ,(2004)
M. Milanese, C. Novara, K. Hsu, K. Poolla, Brief paper: The filter design from data (FD2) problem: Nonlinear Set Membership approach Automatica. ,vol. 45, pp. 2350- 2357 ,(2009) , 10.1016/J.AUTOMATICA.2009.06.014
Angelo Alessandri, Marco Baglietto, Giorgio Battistelli, Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes Automatica. ,vol. 44, pp. 1753- 1765 ,(2008) , 10.1016/J.AUTOMATICA.2007.11.020
Genshiro Kitagawa, Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models Journal of Computational and Graphical Statistics. ,vol. 5, pp. 1- 25 ,(1996) , 10.1080/10618600.1996.10474692
C. Novara, M. Milanese, Set membership identification of nonlinear systems conference on decision and control. ,vol. 3, pp. 2831- 2836 ,(2000) , 10.1109/CDC.2000.914238
M. Milanese, C. Novara, K. Hsu, K. Poolla, Filter design from data: direct vs. two-step approaches american control conference. ,(2006) , 10.1109/ACC.2006.1657422
Mario Milanese, Carlo Novara, Set Membership identification of nonlinear systems Automatica. ,vol. 40, pp. 957- 975 ,(2004) , 10.1016/J.AUTOMATICA.2004.02.002