Stochastic Models That Separate Fractal Dimension and the Hurst Effect

作者: Martin Schlather , Tilmann Gneiting

DOI: 10.1137/S0036144501394387

关键词:

摘要: Fractal behavior and long-range dependence have been observed in an astonishing number of physical, biological, geological, socioeconomic systems. Time series, profiles, surfaces characterized by their fractal dimension, a measure roughness, the Hurst coefficient, long-memory dependence. Both phenomena modeled explained self-affine random functions, such as fractional Gaussian noise Brownian motion. The assumption statistical self-affinity implies linear relationship between dimension coefficient thereby links two phenomena. This article introduces stochastic models that allow for any combination coefficient. Associated software synthesis images with arbitrary, prespecified properties power-law correlations is available. new suggest test assesses coupling decoupling local global behavior.

参考文章(44)
Michael L. Stein, Interpolation of Spatial Data Springer New York. ,(1999) , 10.1007/978-1-4612-1494-6
Martin Schlather, Simulation and Analysis of Random Fields Techn. Univ.. ,(2001)
Tilmann Gneiting, On the Derivatives of Radial Positive Definite Functions Journal of Mathematical Analysis and Applications. ,vol. 236, pp. 86- 93 ,(1999) , 10.1006/JMAA.1999.6434
S. Davies, P. Hall, Fractal analysis of surface roughness by using spatial data Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 61, pp. 3- 37 ,(1999) , 10.1111/1467-9868.00160
O. E. Barndorff-Nielsen, Superposition of Ornstein--Uhlenbeck Type Processes Theory of Probability and Its Applications. ,vol. 45, pp. 175- 194 ,(2001) , 10.1137/S0040585X97978166
Lance M Kaplan, C-CJ Kuo, None, Extending self-similarity for fractional Brownian motion IEEE Transactions on Signal Processing. ,vol. 42, pp. 3526- 3530 ,(1994) , 10.1109/78.340789
Aldo H. Romero, Jose M. Sancho, Generation of Short and Long Range Temporal Correlated Noises Journal of Computational Physics. ,vol. 156, pp. 1- 11 ,(1999) , 10.1006/JCPH.1999.6347
George Sugihara, Harold M. Hastings, Fractals: A User's Guide for the Natural Sciences ,(1993)
B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, S. W. Zucker, Evaluating the fractal dimension of profiles Physical Review A. ,vol. 39, pp. 1500- 1512 ,(1989) , 10.1103/PHYSREVA.39.1500
J. D. Pelletier, Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 2546- 2553 ,(2002) , 10.1073/PNAS.022582599