r − k Class estimator in the linear regression model with correlated errors

作者: Gülesen Üstündagˇ Şiray , Selahattin Kaçıranlar , Sadullah Sakallıoğlu

DOI: 10.1007/S00362-012-0484-8

关键词:

摘要: Autocorrelation in errors and multicollinearity among the regressors are serious problems regression analysis. The aim of this paper is to examine autocorrelation concurrently compare r − k class estimator generalized least squares estimator, principal components ridge by scalar matrix mean square error criteria linear model with correlated errors.

参考文章(17)
George G. Judge, William E. Griffiths, R. Carter Hill, Learning and Practicing Econometrics ,(1993)
Nityananda Sarkar, Mean square error matrix comparison of some estimators in linear regressions with multicollinearity Statistics & Probability Letters. ,vol. 30, pp. 133- 138 ,(1996) , 10.1016/0167-7152(95)00211-1
Hüseyin Güler, Selahattin Kaçıranlar, A Comparison of Mixed and Ridge Estimators of Linear Models Communications in Statistics - Simulation and Computation. ,vol. 38, pp. 368- 401 ,(2009) , 10.1080/03610910802506630
Luis L. Firinguetti, A Simulation Study of Ridge Regression Estimators with Autocorrelated Errors Communications in Statistics - Simulation and Computation. ,vol. 18, pp. 673- 702 ,(1989) , 10.1080/03610918908812784
B. M. Golam Kibria, Performance of some new ridge regression estimators Communications in Statistics - Simulation and Computation. ,vol. 32, pp. 419- 435 ,(2003) , 10.1081/SAC-120017499
Gary C. McDonald, Diane I. Galarneau, A Monte Carlo Evaluation of Some Ridge-Type Estimators Journal of the American Statistical Association. ,vol. 70, pp. 407- 416 ,(1975) , 10.1080/01621459.1975.10479882
Masuo Nomura, Tsuneharu Ohkubo, A note on combining ridge and principal component regression Communications in Statistics-theory and Methods. ,vol. 14, pp. 2489- 2493 ,(1985) , 10.1080/03610928508829057
Michael R. Baye, Darrell F. Parker, Combining ridge and principal component regression:a money demand illustration Communications in Statistics-theory and Methods. ,vol. 13, pp. 197- 205 ,(1984) , 10.1080/03610928408828675