Severe plastic deformation of a TWIP steel

作者: I.B. Timokhina , A. Medvedev , R. Lapovok

DOI: 10.1016/J.MSEA.2013.11.013

关键词:

摘要: Abstract The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C–22.3Mn–0.19Si–0.14Ni–0.27Cr (wt%) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the mechanism as function accumulated strain and processing parameters. relationship between microstructures after different schedules ECAP 200, 300 400 °C, hardening behavior mechanical properties studied. best balance strength ductility (1702 MPa 24%) found two passes 400 °C 300 °C ECAP. It due formation microbands twins in microstructure. twinning observed all except one pass 400 °C. important finding ultrafine grains. Moreover, stacking faults were subgrains with size 50 nm. is also worth mentioning nano-twins within micro-twins same time. that schedule affects dislocation substructure bands, cells, subgrains, variants that, turn, influence strain-hardening properties.

参考文章(24)
D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 500, pp. 196- 206 ,(2009) , 10.1016/J.MSEA.2008.09.031
D.A. Hughes, W.D. Nix, Strain hardening and substructural evolution in NiCo solid solutions at large strains Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 122, pp. 153- 172 ,(1989) , 10.1016/0921-5093(89)90627-8
Kazunori Sato, Michiyuki Ichinose, Yoshihiko Hirotsu, Yasunobu Inoue, Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe–Mn–Al Alloys Isij International. ,vol. 29, pp. 868- 877 ,(1989) , 10.2355/ISIJINTERNATIONAL.29.868
S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning Acta Materialia. ,vol. 52, pp. 2005- 2012 ,(2004) , 10.1016/J.ACTAMAT.2003.12.040
D.A. Hughes, Microstructural evolution in a non-cell forming metal: AlMg Acta Metallurgica Et Materialia. ,vol. 41, pp. 1421- 1430 ,(1993) , 10.1016/0956-7151(93)90251-M
I. Gutierrez-Urrutia, D. Raabe, Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel Scripta Materialia. ,vol. 69, pp. 53- 56 ,(2013) , 10.1016/J.SCRIPTAMAT.2013.03.010
J.L. Collet, Françoise Bley, Alexis Deschamps, Colin Scott, Study of the Deformation Mechanisms of TWIP Steels (Fe-Mn-C) by X-Ray Diffraction Advanced Materials Research. ,vol. 15-17, pp. 822- 827 ,(2006) , 10.4028/WWW.SCIENTIFIC.NET/AMR.15-17.822
H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, On the relationship between the twin internal structure and the work-hardening rate of TWIP steels Scripta Materialia. ,vol. 63, pp. 961- 964 ,(2010) , 10.1016/J.SCRIPTAMAT.2010.07.016
R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure Scripta Materialia. ,vol. 59, pp. 963- 966 ,(2008) , 10.1016/J.SCRIPTAMAT.2008.06.050