On the triviality of λϕd4 theories and the approach to the critical point in d(−) > 4 dimensions

作者: Jürg Fröhlich

DOI: 10.1016/0550-3213(82)90088-8

关键词:

摘要: Abstract It is shown that one- and two-component λ|ϕ|4 theories non-linear σ-models in five or more dimensions approach free generalized fields the continuum (scaling) limit, four same result holds, provided there infinite field strength renormalization, as expected. Some critical exponents for lattice are to be mean field. The main tools Symanzik's polymer representation of scalar correlation inequalities.

参考文章(19)
K. Symanzik, Euclidean Quantum field theory Rend. Scu. Int. Fis. Enrico Fermi 45: 152-226(1969).. ,(1969)
J. Ginibre, General formulation of Griffiths' inequalities Communications in Mathematical Physics. ,vol. 16, pp. 310- 328 ,(1970) , 10.1007/BF01646537
K. Pohlmeyer, The Jost-Schroer theorem for zero-mass fields Communications in Mathematical Physics. ,vol. 12, pp. 204- 211 ,(1969) , 10.1007/BF01661574
Charles M. Newman, Short distance scaling and the maximal degree of a field theory Physics Letters B. ,vol. 83, pp. 63- 66 ,(1979) , 10.1016/0370-2693(79)90889-X
James Glimm, Arthur Jaffe, Particles and Scaling for Lattice Fields and Ising Models Communications in Mathematical Physics. ,vol. 51, pp. 1- 13 ,(1976) , 10.1007/BF01609048
Robert Schrader, A possible constructive approach to φ{ 4 / 4 } Communications in Mathematical Physics. ,vol. 49, pp. 131- 153 ,(1976) , 10.1007/BF01608737
Barry Simon, Correlation inequalities and the decay of correlations in ferromagnets Communications in Mathematical Physics. ,vol. 77, pp. 111- 126 ,(1980) , 10.1007/BF01982711
Joel L. Lebowitz, GHS and other inequalities Communications in Mathematical Physics. ,vol. 35, pp. 87- 92 ,(1974) , 10.1007/BF01646608
J. Glimm, A. Jaffe, Critical exponents and elementary particles Communications in Mathematical Physics. ,vol. 52, pp. 203- 209 ,(1977) , 10.1007/BF01609482