Faster calculation of the full matrix for least-squares refinement

作者: David H. Templeton

DOI: 10.1107/S0108767398018327

关键词:

摘要: Equations derived from a statistical model and valid for all space groups give estimates of the elements matrix least-squares refinement atomic coordinates isotropic thermal parameters large crystal structure with many diffraction data. The are functions lengths directions Patterson vectors distribution weights as function Bragg angle. For data set, this matrix, or portion it, can be calculated in time that is approximately proportional to number independent reflections.

参考文章(5)
David H. Templeton, Least squares and choice of origin in polar space groups Zeitschrift Fur Kristallographie. ,vol. 113, pp. 234- 240 ,(1960) , 10.1524/ZKRI.1960.113.1-6.234
D. E. Tronrud, L. F. Ten Eyck, B. W. Matthews, An efficient general-purpose least-squares refinement program for macromolecular structures Acta Crystallographica Section A. ,vol. 43, pp. 489- 501 ,(1987) , 10.1107/S0108767387099124
W. Lindemann, Computational crystallography edited by D. Sayre Acta Crystallographica Section A. ,vol. 39, pp. 823- 823 ,(1983) , 10.1107/S010876738300166X
R. C. Agarwal, A new least-squares refinement technique based on the fast Fourier transform algorithm Acta Crystallographica Section A. ,vol. 34, pp. 791- 809 ,(1978) , 10.1107/S0567739478001618