Local polynomial regresssion estimators in survey sampling

作者: Jean D. Opsomer , F. Jay Breidt

DOI: 10.1214/AOS/1015956706

关键词:

摘要: Estimation of finite population totals in the presence auxiliary information is considered. A class estimators based on local polynomial regression proposed. Like generalized estimators, these are weighted linear combinations study variables, which weights calibrated to known control totals, but assumptions superpopulation model considerably weaker. The shown be asymptotically design-unbiased and consistent under mild assumptions. variance approximation Taylor linearization suggested for design mean squared error estimators. robust sense attaining Godambe-Joshi lower bound anticipated variance. Simulation experiments indicate that more efficient than when function incorrectly specified, while being approximately as parametric specification correct.

参考文章(18)
D. Ruppert, M. P. Wand, Multivariate Locally Weighted Least Squares Regression Annals of Statistics. ,vol. 22, pp. 1346- 1370 ,(1994) , 10.1214/AOS/1176325632
Jean D. Opsomer, David Ruppert, Fitting a Bivariate Additive Model by Local Polynomial Regression Annals of Statistics. ,vol. 25, pp. 186- 211 ,(1997) , 10.1214/AOS/1034276626
Roger L. Wright, Finite Population Sampling with Multivariate Auxiliary Information Journal of the American Statistical Association. ,vol. 78, pp. 879- 884 ,(1983) , 10.1080/01621459.1983.10477035
Cary T. Isaki, Wayne A. Fuller, Survey Design under the Regression Superpopulation Model Journal of the American Statistical Association. ,vol. 77, pp. 89- 96 ,(1982) , 10.1080/01621459.1982.10477770
M. E. Thompson, Theory of Sample Surveys ,(1997)
William S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots Journal of the American Statistical Association. ,vol. 74, pp. 829- 836 ,(1979) , 10.1080/01621459.1979.10481038
Bengt Swensson, Jan Hȧkan Wretman, Carl-Erik Särndal, Model assisted survey sampling ,(1997)
Jianqing Fan, Design-adaptive Nonparametric Regression Journal of the American Statistical Association. ,vol. 87, pp. 998- 1004 ,(1992) , 10.1080/01621459.1992.10476255