Decoherence and classical predictability of phase space histories

作者: C. Anastopoulos

DOI: 10.1103/PHYSREVE.53.4711

关键词:

摘要: We consider the decoherence of phase-space histories in quantum Brownian motion models, consisting a particle moving under a potential V(x) contact with heat bath temperature T and dissipation constant g in Markovian regime. The are described by quasiprojectors Gaussian density matrices smeared over large cells characterized size @G# phase-space cell together [M] margin ~the region at boundary G which Weyl symbol the projector goes from 1 to 0!. generalize earlier results Hagedorn show that an initial Gaussian density matrix remains approximately nonunitary time evolution deriving bound giving validity of this approximation. Following work Omne`s @J. Stat. Phys. 51, 351 ~1989!# we use result to compute projectors master equation histories of samplings decohere, probabilities for these peaked about classical dissipative evolution, but element unpredictability is reflected increase of margin.

参考文章(20)
G. A. Hagedorn, Semiclassical quantum mechanics Communications in Mathematical Physics. ,vol. 71, pp. 77- 93 ,(1980) , 10.1007/BF01230088
Robert B. Griffiths, Consistent histories and the interpretation of quantum mechanics Journal of Statistical Physics. ,vol. 36, pp. 219- 272 ,(1984) , 10.1007/BF01015734
Roland Omnès, Consistent interpretations of quantum mechanics Reviews of Modern Physics. ,vol. 64, pp. 339- 382 ,(1992) , 10.1103/REVMODPHYS.64.339
A.O. Caldeira, A.J. Leggett, Path integral approach to quantum Brownian motion Physica A: Statistical Mechanics and its Applications. ,vol. 121, pp. 587- 616 ,(1983) , 10.1016/0378-4371(83)90013-4
Roland Omn�s, Logical reformulation of quantum mechanics. I. Foundations Journal of Statistical Physics. ,vol. 53, pp. 893- 932 ,(1988) , 10.1007/BF01014230
Vinay Ambegaokar, Quantum Brownian motion and its classical limit Deutsche Bunsen-Gesselschaft für Physikalische Chemie. Discussion meeting. ,vol. 95, pp. 400- 404 ,(1991) , 10.1002/BBPC.19910950331
G. Lindblad, On the Generators of Quantum Dynamical Semigroups Communications in Mathematical Physics. ,vol. 48, pp. 119- 130 ,(1976) , 10.1007/BF01608499
Roland Omn�s, Logical reformulation of quantum mechanics. III. Classical limit and irreversibility Journal of Statistical Physics. ,vol. 53, pp. 957- 975 ,(1988) , 10.1007/BF01014232
H. F. Dowker, J. J. Halliwell, Quantum mechanics of history: The decoherence functional in quantum mechanics Physical Review D. ,vol. 46, pp. 1580- 1609 ,(1992) , 10.1103/PHYSREVD.46.1580