Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents

作者: R. Stagaard , M. J. Flick , B. Bojko , K. Goryński , P. Z. Goryńska

DOI: 10.1111/JTH.14148

关键词:

摘要: Essentials The efficacy of systemic antifibrinolytics for hemophilic non-mucosal bleeding is undetermined. effect systemically inhibiting fibrinolysis in mice and rats was explored. Neither nor the response to factor treatment improved after fibrinolysis. phenotype hemophilia A appears largely unaffected by SUMMARY Background Fibrinolysis may exacerbate patients with (HA). Accordingly, have been used help maintain hemostatic control. Although antifibrinolytic drugs proven be effective mucosal bleeds oral cavity, their tissues remain an open question significant clinical interest. Objective To determine whether improves outcome tail vein transection (TVT) models, a standard ex vivo clotting/fibrinolysis assay can as predictive surrogate in vivo efficacy. Methods highly sensitive TVT model employed rodents suppressed fibrinolytic system examine on tissue. In mice, induced congenital models were combined attenuation achieved either genetically or pharmacologically (tranexamic acid [TXA]). rats, followed whole blood rotational thromboelastometry evaluation same animals gauge value such assays. Results beneficial TXA therapy observed could not confirmed rats. Furthermore, neither intravenously administered knockout genes encoding plasminogen tissue-type activator markedly mice. Conclusions findings here suggest that inhibition limiting HA tissues.

参考文章(53)
George J Broze, Zheng-Feng Yin, Nina Lasky, None, A tail vein bleeding time model and delayed bleeding in hemophiliac mice. Thrombosis and Haemostasis. ,vol. 85, pp. 747- 748 ,(2001) , 10.1055/S-0037-1615666
E. VERCAUTEREN, N. J. MUTCH, P. J. DECLERCK, A. GILS, Plasmin and the thrombin-thrombomodulin complex both contribute to thrombin-activatable fibrinolysis inhibitor activation in whole blood model thrombi. Journal of Thrombosis and Haemostasis. ,vol. 11, pp. 190- 192 ,(2013) , 10.1111/JTH.12062
David Whiting, James A. DiNardo, TEG and ROTEM: Technology and clinical applications American Journal of Hematology. ,vol. 89, pp. 228- 232 ,(2014) , 10.1002/AJH.23599
T. ELM, D. M. KARPF, K. ØVLISEN, H. PELZER, M. EZBAN, M. KJALKE, M. TRANHOLM, Pharmacokinetics and pharmacodynamics of a new recombinant FVIII (N8) in haemophilia A mice. Haemophilia. ,vol. 18, pp. 139- 145 ,(2012) , 10.1111/J.1365-2516.2011.02608.X
J. H. FOLEY, M. E. NESHEIM, G. E. RIVARD, K. E. BRUMMEL-ZIEDINS, Thrombin activatable fibrinolysis inhibitor activation and bleeding in haemophilia A Haemophilia. ,vol. 18, ,(2012) , 10.1111/J.1365-2516.2011.02648.X
L. Bi, A.M. Lawler, S.E. Antonarakis, K.A. High, J.D. Gearhart, H.H. Kazazian, Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A Nature Genetics. ,vol. 10, pp. 119- 121 ,(1995) , 10.1038/NG0595-119
K. E. BRUMMEL-ZIEDINS, R. F. BRANDA, S. BUTENAS, K. G. MANN, Discordant fibrin formation in hemophilia Journal of Thrombosis and Haemostasis. ,vol. 7, pp. 825- 832 ,(2009) , 10.1111/J.1538-7836.2009.03306.X
Takeshi Abe, Akira Sato, Mutsuyoshi Kazama, Toshihiko Matsumura, EFFECT OF Σ-AMINOCAPROIC ACID IN HÆMOPHILIA The Lancet. ,vol. 280, pp. 405- ,(1962) , 10.1016/S0140-6736(62)90265-9
Krzysztof Gorynski, Barbara Bojko, Michael Kluger, Angela Jerath, Marcin Wąsowicz, Janusz Pawliszyn, Development of SPME method for concomitant sample preparation of rocuronium bromide and tranexamic acid in plasma. Journal of Pharmaceutical and Biomedical Analysis. ,vol. 92, pp. 183- 192 ,(2014) , 10.1016/J.JPBA.2014.01.026