Multilevel Monte Carlo method for ergodic SDEs without contractivity

作者: Wei Fang , Michael B. Giles

DOI: 10.1016/J.JMAA.2018.12.032

关键词:

摘要: Abstract This paper proposes a new multilevel Monte Carlo (MLMC) method for the ergodic SDEs which do not satisfy contractivity condition. By introducing change of measure technique, we simulate path with and add Radon–Nikodym derivative to estimator. We can show strong error is uniformly bounded respect T. Moreover, variance level estimators increase linearly in T, great reduction compared exponential standard MLMC. Then total computational cost reduced O ( e − 2 | log ⁡ ) from 3 method. Numerical experiments support our analysis.

参考文章(30)
Yuan Xia, Michael B. Giles, Multilevel Path Simulation for Jump-Diffusion SDEs Springer, Berlin, Heidelberg. pp. 695- 708 ,(2012) , 10.1007/978-3-642-27440-4_41
Peter E Kloeden, Eckhard Platen, Matthias Gelbrich, Werner Romisch, Numerical Solution of Stochastic Differential Equations ,(1992)
Michael V. Tretyakov, Grigori Milstein, Grigori Noah Milstein, Stochastic Numerics for Mathematical Physics ,(2004)
Desmond J. Higham, Xuerong Mao, Andrew M. Stuart, Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations SIAM Journal on Numerical Analysis. ,vol. 40, pp. 1041- 1063 ,(2002) , 10.1137/S0036142901389530
Gareth O. Roberts, Richard L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations Bernoulli. ,vol. 2, pp. 341- 363 ,(1996) , 10.2307/3318418