Soluble secondary minerals of antimony in Pezinok and Kremnica (Slovakia) and the question of mobility or immobility of antimony in mine waters

作者: Juraj Majzlan , Martin Števko , Tomáš Lánczos

DOI: 10.1071/EN16013

关键词:

摘要: Environmental context Antimony enters the environment from tailings and mines but there are widely divergent statements about its mobility in environment. This work addresses question of Sb by a combination mineralogical geochemical studies. Abstract characterises two occurrences with an abundance supergene minerals brandholzite [Mg[Sb(OH)6]2·6H2O], klebelsbergite [Sb4O4(OH)2(SO4)] peretaite [CaSb4O4(OH)2(SO4)2·2H2O]. Brandholzite forms near-neutral waters, where stibnite (Sb2S3) decomposes presence abundant carbonates. The SbIII sulfates form acidic marcasite or pyrite (FeS2). These initial rapidly (brandholzite within weeks) supply into local waters. Calculation saturation indices underground water (present study) many waters discharged (data literature) show that (and related soluble minerals) undersaturated. Hence, if they do exist, should dissolve. Insoluble phases, such as tripuhyite (FeSbO4) grossly supersaturated, not (or very slowly). we conclude antimony observed studies is due to solubility minerals. immobility stated slow persistent formation insoluble tripuhyite. When kinetics these taken account, can be reconciled.

参考文章(27)
Ivana Ondrejková, Zlatica Ženišová, Renáta Fľaková, Dávid Krčmář, Ondra Sracek, The Distribution of Antimony and Arsenic in Waters of the Dúbrava Abandoned Mine Site, Slovak Republic Mine Water and The Environment. ,vol. 32, pp. 207- 221 ,(2013) , 10.1007/S10230-013-0229-5
Marina Accornero, Luigi Marini, Matteo Lelli, The Dissociation Constant of Antimonic Acid at 10–40 °C Journal of Solution Chemistry. ,vol. 37, pp. 785- 800 ,(2008) , 10.1007/S10953-008-9280-4
P. Leverett, J. K. Reynolds, A. J. Roper, P. A. Williams, Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment Mineralogical Magazine. ,vol. 76, pp. 891- 902 ,(2012) , 10.1180/MINMAG.2012.076.4.06
Renata Flakova, Zlatica Zenisova, Ondra Sracek, David Krcmar, Ivana Ondrejkova, Martin Chovan, Bronislava Lalinská, Miriam Fendekova, The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic Environmental Earth Sciences. ,vol. 66, pp. 1043- 1057 ,(2012) , 10.1007/S12665-011-1310-7
Vanessa J. Ritchie, Anastasia G. Ilgen, Seth H. Mueller, Thomas P. Trainor, Richard J. Goldfarb, Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska Chemical Geology. ,vol. 335, pp. 172- 188 ,(2013) , 10.1016/J.CHEMGEO.2012.10.016
P.M. Ashley, D. Craw, B.P. Graham, D.A. Chappell, Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand Journal of Geochemical Exploration. ,vol. 77, pp. 1- 14 ,(2003) , 10.1016/S0375-6742(02)00251-0
D. Kossoff, K. A. Hudson-Edwards, W. E. Dubbin, M. Alfredsson, T. Geraki, Cycling of As, P, Pb and Sb during weathering of mine tailings: implications for fluvial environments Mineralogical Magazine. ,vol. 76, pp. 1209- 1228 ,(2012) , 10.1180/MINMAG.2012.076.5.14
Satoshi Mitsunobu, Teppei Harada, Yoshio Takahashi, Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environmental Science & Technology. ,vol. 40, pp. 7270- 7276 ,(2006) , 10.1021/ES060694X
Skya E. Fawcett, Heather E. Jamieson, D. Kirk Nordstrom, R. Blaine McCleskey, Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada Applied Geochemistry. ,vol. 62, pp. 3- 17 ,(2015) , 10.1016/J.APGEOCHEM.2014.12.012