Defining clusters from a hierarchical cluster tree

作者: Peter Langfelder , Bin Zhang , Steve Horvath

DOI: 10.1093/BIOINFORMATICS/BTM563

关键词:

摘要: Summary: Hierarchical clustering is a widely used method for detecting clusters in genomic data. Clusters are defined by cutting branches off the dendrogram. A common but inflexible uses constant height cutoff value; this exhibits suboptimal performance on complicated dendrograms. We present Dynamic Tree Cut R package that implements novel dynamic branch methods dendrogram depending their shape. Compared to method, our techniques offer following advantages: (1) they capable of identifying nested clusters; (2) flexible—cluster shape parameters can be tuned suit application at hand; (3) suitable automation; and (4) optionally combine advantages hierarchical partitioning around medoids, giving better detection outliers. illustrate use these applying them protein–protein interaction network data simulated gene expression set. Availability: The implemented an available http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/BranchCutting Contact: stevitihit@yahoo.com Supplementary information: Supplementary Bioinformatics online.

参考文章(15)
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Finding Groups in Data John Wiley & Sons, Inc.. ,(1990) , 10.1002/9780470316801
Andy M Yip, Steve Horvath, Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics. ,vol. 8, pp. 22- 22 ,(2007) , 10.1186/1471-2105-8-22
Marc RJ Carlson, Bin Zhang, Zixing Fang, Paul S Mischel, Steve Horvath, Stanley F Nelson, Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics. ,vol. 7, pp. 40- 40 ,(2006) , 10.1186/1471-2164-7-40
Anatole Ghazalpour, Sudheer Doss, Bin Zhang, Susanna Wang, Christopher Plaisier, Ruth Castellanos, Alec Brozell, Eric E Schadt, Thomas A Drake, Aldons J Lusis, Steve Horvath, Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight PLOS Genetics. ,vol. 2, pp. 1182- 1192 ,(2005) , 10.1371/JOURNAL.PGEN.0020130
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
D. Dembele, P. Kastner, Fuzzy C-means method for clustering microarray data Bioinformatics. ,vol. 19, pp. 973- 980 ,(2003) , 10.1093/BIOINFORMATICS/BTG119
Mark J. van der Laan, Katherine S. Pollard, A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap Journal of Statistical Planning and Inference. ,vol. 117, pp. 275- 303 ,(2003) , 10.1016/S0378-3758(02)00388-9
Jun Dong, Steve Horvath, Understanding network concepts in modules BMC Systems Biology. ,vol. 1, pp. 24- 24 ,(2007) , 10.1186/1752-0509-1-24