Slow and Immobile Solitons in Quadratic Media

作者: S. V. Polyakov , A. P. Sukhorukov

DOI: 10.1007/978-94-007-0850-1_21

关键词:

摘要: It is well known what solitons can be excited in wide range of nonlinear media due to the balance dispersive and effects [1]. The properties with third-order nonlinearity were studied very intensive. In particular, phenomenon slow immobile forming near bounds nontransmission bands medium complex dispersion was discovered theoretically numerically [2, 3, 4]. This based on bound frequency shift self-action effects. input signal forbidden frequencies splits into non-dumping solitons. named “nonlinear tunneling” [2]. Solitons that propagate are as “gap solitons”.

参考文章(10)
William E. Torruellas, Zuo Wang, David J. Hagan, Eric W. VanStryland, George I. Stegeman, Lluís Torner, Curtis R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium. Physical Review Letters. ,vol. 74, pp. 5036- 5039 ,(1995) , 10.1103/PHYSREVLETT.74.5036
G. I. Stegeman, D. J. Hagan, L. Torner, χ (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons Optical and Quantum Electronics. ,vol. 28, pp. 1691- 1740 ,(1996) , 10.1007/BF00698538
Victoria V. Steblina, Yuri S. Kivshar, Mietek Lisak, Boris A. Malomed, Self-guided beams in a diffractive χ (2) medium: variational approach Optics Communications. ,vol. 118, pp. 345- 352 ,(1995) , 10.1016/0030-4018(95)00308-U
Roland Schiek, Yongsoon Baek, George I. Stegeman, One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides Physical Review E. ,vol. 53, pp. 1138- 1141 ,(1996) , 10.1103/PHYSREVE.53.1138
Yuri S. Kivshar, Gap solitons due to cascading Physical Review E. ,vol. 51, pp. 1613- 1615 ,(1995) , 10.1103/PHYSREVE.51.1613
Claudio Conti, Stefano Trillo, Gaetano Assanto, Bloch Function Approach for parametric gap solitons Optics Letters. ,vol. 22, pp. 445- 447 ,(1997) , 10.1364/OL.22.000445
Wei Chen, D. L. Mills, Gap solitons and the nonlinear optical response of superlattices. Physical Review Letters. ,vol. 58, pp. 160- 163 ,(1987) , 10.1103/PHYSREVLETT.58.160
ARNOLD SOMMERFELD, CHAPTER V – THEORY OF WAVES Mechanics of Deformable Bodies#R##N#Lectures on Theoretical Physics. pp. 168- 206 ,(1950) , 10.1016/B978-0-12-654650-7.50009-8
Anatolii P. Sukhorukov, Nonlinear wave interactions in optics and radio physics MoIzN. ,(1988)