Modeling Turning Points in Financial Markets with Soft Computing Techniques

作者: Antonia Azzini , Célia da Costa Pereira , Andrea G. B. Tettamanzi

DOI: 10.1007/978-3-642-13950-5_9

关键词:

摘要: Two independent evolutionary modeling methods, based on fuzzy logic and neural networks respectively, are applied to predicting trend reversals in financial time series of the instruments S&P 500, crude oil gold, their performances compared. Both methods found give essentially same results, indicating that partially predictable.

参考文章(24)
Evolutionary Computation 1 IOP Publishing Ltd. ,(2000) , 10.1887/0750306645
Célia da Costa Pereira, Andrea G. B. Tettamanzi, Fuzzy-Evolutionary Modeling for Single-Position Day Trading Natural Computing in Computational Finance. ,vol. 100, pp. 131- 159 ,(2008) , 10.1007/978-3-540-77477-8_8
P.A.N. Bosman, H. Lipson, M. Keijzer, not Cwi, Proceedings of the Genetic and Evolutionary Computation Conference - GECCO - 2006 ACM Press. ,(2006)
Lotfi A. Zadeh, The Calculus of Fuzzy If/Then Rules Proceedings of the Theorie und Praxis, Fuzzy Logik. pp. 84- 94 ,(1992)
Takanori Shibata, Lofti A. Zadeh, Elie Sanchez, Genetic Algorithms And Fuzzy Logic Systems Soft Computing Perspectives ,(1997)
Anthony Brabazon, Michael O'Neill, Biologically Inspired Algorithms for Financial Modelling ,(2020)
Steven B. Achelis, Technical analysis from A to Z McGraw-Hill. ,(2001)
Antonia Azzini, Andrea G. B. Tettamanzi, Evolutionary Single-Position Automated Trading Lecture Notes in Computer Science. ,vol. 4974, pp. 62- 72 ,(2008) , 10.1007/978-3-540-78761-7_7