Quantized fracture mechanics

作者: Nicola M. Pugno † , Rodney S. Ruoff ‡

DOI: 10.1080/14786430412331280382

关键词:

摘要: A new energy-based theory, quantized fracture mechanics (QFM), is presented that modifies continuum-based mechanics; stress- and strain-based QFM analogs are also proposed. The differentials in Griffith's criterion substituted with finite differences; the implications remarkable. Fracture of tiny systems a given geometry type loading occurs at ‘quantized’ stresses well predicted by QFM: strengths compared experimental results on carbon nanotubes, β-SiC nanorods, α-Si3N4 whiskers, polysilicon thin films; molecular mechanics/dynamics simulation nanotubes graphene cracks holes, statistical mechanics-based simulations two-dimensional spring networks. self-consistent, agreeing to first-order linear elastic (LEFM), second-order non-linear (NLFM). For vanishing crack length predicts ideal strength agre...

参考文章(33)
Yukitaka Murakami, Stress Intensity Factors Handbook ,(2006)
R. Ruoff, T. Belytschko, S. P. Xiao, Effects of Defects on the Strength of Nanotubes: Experimental-Computational Comparisons arXiv: Atomic and Molecular Clusters. ,(2002)
T. Belytschko, S. P. Xiao, G. C. Schatz, R. S. Ruoff, Atomistic simulations of nanotube fracture Physical Review B. ,vol. 65, pp. 235430- ,(2002) , 10.1103/PHYSREVB.65.235430
Shigenobu Ogata, Naoto Hirosaki, Cenk Kocer, Yoji Shibutani, A comparative ab initio study of the ‘ideal’ strength of single crystal α- and β-Si3N4 Acta Materialia. ,vol. 52, pp. 233- 238 ,(2004) , 10.1016/J.ACTAMAT.2003.09.008
C.-H. Wu, Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion Journal of Applied Mechanics. ,vol. 45, pp. 553- 558 ,(1978) , 10.1115/1.3424360
A. A. Griffith, The Phenomena of Rupture and Flow in Solids Philosophical Transactions of the Royal Society A. ,vol. 221, pp. 163- 198 ,(1921) , 10.1098/RSTA.1921.0006
Ted Belytschko, S. P. Xiao, Coupling Methods for Continuum Model with Molecular Model International Journal for Multiscale Computational Engineering. ,vol. 1, pp. 115- 126 ,(2003) , 10.1615/INTJMULTCOMPENG.V1.I1.100
E Orowan, Fracture and strength of solids Reports on Progress in Physics. ,vol. 12, pp. 185- 232 ,(1949) , 10.1088/0034-4885/12/1/309