Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites

作者: Le Kuai , Kevin W. Bowman , Kazuyuki Miyazaki , Makoto Deushi , Laura Revell

DOI: 10.5194/ACP-20-281-2020

关键词:

摘要: Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6  µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on distributions of clouds, ozone ( O3 ), water vapor H2O air temperature ( Ta surface temperature Ts ). Benchmarking present-day fluxes quantifying relative influence of their drivers first step estimating climate feedbacks from radiative forcing and predicting evolution. To end, we constructed observational instantaneous kernels (IRKs) under clear-sky conditions, representing sensitivities TOA flux vertical distribution of geophysical variables, including , based upon Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels present-day simulations Chemistry-Climate Model Initiative (CCMI) project compared 2006 reanalysis assimilating satellite observations, show models have large differences flux, attributable different geophysical variables. In particular, model continue diverge observations the tropics, reported previous studies Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. principal culprits tropical middle upper tropospheric followed by tropical lower . Five out eight studied here have TOA biases exceeding 100 mW m −2 ozone bias. Another set five 50 mW m due to On other hand, bias negligible all models (no more than 30 mW m We found atmospheric component (AM3) Geophysical Fluid Dynamics Laboratory (GFDL) general circulation Canadian Middle Atmosphere (CMAM) the lowest globally but result cancellation opposite biases due processes. Overall, multi-model ensemble mean bias - 133 ± 98  mW m indicating too atmospherically opaque trapping too much radiation atmosphere by overestimated Having much troposphere would impacts the sensitivity competing effects add more uncertainties forcing. find inter-model TOA (OLR) difference well anti-correlated with bias. This suggests there significant radiative compensation calculation longwave radiation.

参考文章(39)
Luke D. Oman, Anne R. Douglass, Jerry R. Ziemke, Jose M. Rodriguez, Darryn W. Waugh, J. Eric Nielsen, The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation Journal of Geophysical Research: Atmospheres. ,vol. 118, pp. 965- 976 ,(2013) , 10.1029/2012JD018546
Thomas F Stocker, Dahe Qin, G-K Plattner, Melinda MB Tignor, Simon K Allen, Judith Boschung, Alexander Nauels, Yu Xia, Vincent Bex, Pauline M Midgley, Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Published in <b>2007</b> in Cambridge by Cambridge university press. ,(2007) , 10.1017/CBO9781107415324
John E. Harries, Helen E. Brindley, Pretty J. Sagoo, Richard J. Bantges, Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997 Nature. ,vol. 410, pp. 355- 357 ,(2001) , 10.1038/35066553
K. Miyazaki, H. J. Eskes, K. Sudo, A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data Atmospheric Chemistry and Physics. ,vol. 15, pp. 8315- 8348 ,(2015) , 10.5194/ACP-15-8315-2015
K. Miyazaki, H. J. Eskes, K. Sudo, C. Zhang, Global lightning NO x production estimated by an assimilation of multiple satellite data sets Atmospheric Chemistry and Physics. ,vol. 14, pp. 3277- 3305 ,(2014) , 10.5194/ACP-14-3277-2014
Matus Martini, Dale J. Allen, Kenneth E. Pickering, Georgiy L. Stenchikov, Andreas Richter, Edward J. Hyer, Christopher P. Loughner, The impact of North American anthropogenic emissions and lightning on long‐range transport of trace gases and their export from the continent during summers 2002 and 2004 Journal of Geophysical Research. ,vol. 116, ,(2011) , 10.1029/2010JD014305
B. N. Duncan, S. E. Strahan, Y. Yoshida, S. D. Steenrod, N. Livesey, Model study of the cross-tropopause transport of biomass burning pollution Atmospheric Chemistry and Physics. ,vol. 7, pp. 3713- 3736 ,(2007) , 10.5194/ACP-7-3713-2007
K. W. Bowman, D. T. Shindell, H. M. Worden, J.F. Lamarque, P. J. Young, D. S. Stevenson, Z. Qu, M. de la Torre, D. Bergmann, P. J. Cameron-Smith, W. J. Collins, R. Doherty, S. B. Dalsøren, G. Faluvegi, G. Folberth, L. W. Horowitz, B. M. Josse, Y. H. Lee, I. A. MacKenzie, G. Myhre, T. Nagashima, V. Naik, D. A. Plummer, S. T. Rumbold, R. B. Skeie, S. A. Strode, K. Sudo, S. Szopa, A. Voulgarakis, G. Zeng, S. S. Kulawik, A. M. Aghedo, J. R. Worden, Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations Atmospheric Chemistry and Physics. ,vol. 13, pp. 4057- 4072 ,(2013) , 10.5194/ACP-13-4057-2013
L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, The HITRAN database: 1986 edition. Applied Optics. ,vol. 26, pp. 4058- 4097 ,(1987) , 10.1364/AO.26.004058
A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, T. Peter, The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm Geoscientific Model Development. ,vol. 6, pp. 1407- 1427 ,(2013) , 10.5194/GMD-6-1407-2013