Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model

作者: Jana Jureckova

DOI: 10.1214/AOS/1176343843

关键词:

摘要: Let $\hat{\mathbf{\Delta}}_M$ be an $M$-estimator (maximum-likelihood type estimator) and $\hat{\mathbf{\Delta}}_R$ $R$-estimator (rank of the parameter $\mathbf{\Delta} = (\Delta_1,\cdots, \Delta_p)$ in linear regression model $X_{Ni} \sum^p_{j=1} \Delta_jc_{ji} + e_i, i 1,\cdots, N$. The asymptotic distribution $\hat\mathbf{\Delta}_M - \hat\mathbf{\Delta}_R$ is derived for $p$ fixed $N \rightarrow \infty,$ under some assumptions on design matrix, error $F$ functions generating respective estimators. result has several consequences which have interest their own; among others, it shown that to any corresponds such estimators asymptotically equivalent, conversely. A special case when $\hat\mathbf{\Delta}_M$ maximum likelihood estimator $\hat\mathbf{\Delta}_R$ $R$-estimator, both efficient $G$, also considered.

参考文章(10)
P. J. Bickel, On Some Analogues to Linear Combinations of Order Statistics in the Linear Model Annals of Statistics. ,vol. 1, pp. 597- 616 ,(1973) , 10.1214/AOS/1176342457
Jana Jureckova, Nonparametric Estimate of Regression Coefficients Annals of Mathematical Statistics. ,vol. 42, pp. 1328- 1338 ,(1971) , 10.1214/AOMS/1177693245
Charles H. Kraft, Constance van Eeden, Linearized Rank Estimates and Signed-Rank Estimates for the General Linear Hypothesis Annals of Mathematical Statistics. ,vol. 43, pp. 42- 57 ,(1972) , 10.1214/AOMS/1177692699
Louis A. Jaeckel, Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals Annals of Mathematical Statistics. ,vol. 43, pp. 1449- 1458 ,(1972) , 10.1214/AOMS/1177692377
Hira Lal Koul, Asymptotic Behavior of a Class of Confidence Regions Based on Ranks in Regression Annals of Mathematical Statistics. ,vol. 42, pp. 466- 476 ,(1971) , 10.1214/AOMS/1177693398
Peter J. Huber, Robust Regression: Asymptotics, Conjectures and Monte Carlo Annals of Statistics. ,vol. 1, pp. 799- 821 ,(1973) , 10.1214/AOS/1176342503
Jaroslav Hájek, Pranab Kumar Sen, Zbyněk Šidák, Theory of rank tests ,(1967)
Jana Jureckova, Asymptotic Linearity of a Rank Statistic in Regression Parameter Annals of Mathematical Statistics. ,vol. 40, pp. 1889- 1900 ,(1969) , 10.1214/AOMS/1177697273
E. L. Lehmann, Some Concepts of Dependence Annals of Mathematical Statistics. ,vol. 37, pp. 1137- 1153 ,(1966) , 10.1007/978-1-4614-1412-4_64
Peter J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. pp. 221- 233 ,(1967)