Bridging Category-level and Instance-level Semantic Image Segmentation

作者: Zifeng Wu , Chunhua Shen , Anton van den Hengel

DOI:

关键词:

摘要: … to instance-level image segmentation that is built on top of category-level segmentation. Specifically, for each pixel in a semantic category mask, its corresponding instance bounding …

参考文章(24)
Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation international conference on computer vision. pp. 1635- 1643 ,(2015) , 10.1109/ICCV.2015.191
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
Bastian Leibe, Aleš Leonardis, Bernt Schiele, Robust Object Detection with Interleaved Categorization and Segmentation International Journal of Computer Vision. ,vol. 77, pp. 259- 289 ,(2008) , 10.1007/S11263-007-0095-3
Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman, The Pascal Visual Object Classes Challenge: A Retrospective International Journal of Computer Vision. ,vol. 111, pp. 98- 136 ,(2015) , 10.1007/S11263-014-0733-5
M Sai Praneeth, Xudong Peng, Alice Li, Shahrzad Hosseini Vajargah, Going deeper with convolutions computer vision and pattern recognition. pp. 1- 9 ,(2015) , 10.1109/CVPR.2015.7298594
Stéphane Mallat, A wavelet tour of signal processing ,(1998)
Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, Alan Yuille, The Role of Context for Object Detection and Semantic Segmentation in the Wild computer vision and pattern recognition. pp. 891- 898 ,(2014) , 10.1109/CVPR.2014.119
Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev, Subhransu Maji, Jitendra Malik, Semantic contours from inverse detectors international conference on computer vision. pp. 991- 998 ,(2011) , 10.1109/ICCV.2011.6126343
Vladlen Koltun, Philipp Krähenbühl, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials neural information processing systems. ,vol. 24, pp. 109- 117 ,(2011)