Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

作者: Paul Meakin , Alexandre M. Tartakovsky

DOI: 10.1029/2008RG000263

关键词:

摘要: In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), mediating dissolution precipitation processes enabling chemical transformations in solution at mineral surfaces. Although complex geometries of fracture apertures, networks pore spaces may make it difficult to accurately predict fluid flow saturated (single-phase) systems, well developed methods are available. The simulation multiphase is much more challenging because large density and/or viscosity ratios found important applications (water/air vadose zone, water/oil, water/gas, gas/oil water/oil/gas oil reservoirs, water/air/non-aqueous phase liquids (NAPL) contaminated zone systems gas/molten rock volcanic for example). addition, behavior fluid-fluid-solid contact lines, its impact on dynamic angles, must also be taken into account, coupled with flow. Pore network models simple statistical physics based such as invasion percolation diffusion-limited aggregation have been used quite extensively. However, these simplified space physics. Other lattice Boltzmann gasmore » models, molecular dynamics, Monte Carlo methods, particle dissipative dynamics smoothed hydrodynamics firmly first principles, they do not require geometries. less (in some cases very less) computationally efficient that models. Recently combination continuum computation fluid-fluid interface tracking or capturing dependence angles velocity line has simulate spaces. Fundamental conservation principles - momentum, mass (or volume incompressible fluids) energy, symmetries (Galilean invariance isotropy) central them. mesoscale observance microscopic level leads macroscopic can represented Navier Stokes equation. remarkable fact all simpe fluids, irrespective their nature, described Navier-Stokes equation result acting level.« less

参考文章(239)
S. V. Buldyrev, A.-L. Barabási, F. Caserta, S. Havlin, H. E. Stanley, T. Vicsek, Anomalous interface roughening in porous media: Experiment and model. Physical Review A. ,vol. 45, ,(1992) , 10.1103/PHYSREVA.45.R8313
Joseph P. Morris, Patrick J. Fox, Yi Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH Journal of Computational Physics. ,vol. 136, pp. 214- 226 ,(1997) , 10.1006/JCPH.1997.5776
Nitin Chopra, Bruce J. Hinds, Mainak Majumder, Rodney Andrews, Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes Nature. ,vol. 438, pp. 44- 44 ,(2005) , 10.1038/43844A
J. P. Stokes, A. P. Kushnick, Mark O. Robbins, Interface dynamics in porous media: A random-field description. Physical Review Letters. ,vol. 60, pp. 1386- 1389 ,(1988) , 10.1103/PHYSREVLETT.60.1386
F. J. Alexander, H. Chen, S. Chen, G. D. Doolen, Lattice Boltzmann model for compressible fluids Physical Review A. ,vol. 46, pp. 1967- 1970 ,(1992) , 10.1103/PHYSREVA.46.1967
Atle Svandal, Bjørn Kvamme, Làszlò Grànàsy, Tamàs Pusztai, Trygve Buanes, Joakim Hove, None, The phase-field theory applied to CO2 and CH4 hydrate Journal of Crystal Growth. ,vol. 287, pp. 486- 490 ,(2006) , 10.1016/J.JCRYSGRO.2005.11.071
Stig Bakke, Pål-Eric Øren, 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks SPE Journal. ,vol. 2, pp. 136- 149 ,(1997) , 10.2118/35479-PA
L H Tanner, The spreading of silicone oil drops on horizontal surfaces Journal of Physics D. ,vol. 12, pp. 1473- 1484 ,(1979) , 10.1088/0022-3727/12/9/009
Daniel H. Rothman, Jeffrey M. Keller, Immiscible cellular-automaton fluids Journal of Statistical Physics. ,vol. 52, pp. 1119- 1127 ,(1988) , 10.1007/BF01019743