AUTOMATICALLY DETECTING "SIGNIFICANT EVENTS" ON SenseCam

作者: NA LI , MARTIN CRANE , HEATHER J. RUSKIN

DOI: 10.1142/S0219691313500501

关键词:

摘要: SenseCam is an effective memory-aid device that can automatically record images and other data from the wearer's whole day. The main issue that, while produces a sizeable collection of over time period, vast quantity captured contains large percentage routine events, which are little interest to review. In this article, aim detect "Significant Events" for wearers. We use several series analysis methods such as Detrended Fluctuation Analysis (DFA), Eigenvalue dynamics Wavelet Correlations analyse multiple generated by SenseCam. show exposes strong long-range correlation relationship in collections. Maximum Overlap Discrete Transform (MODWT) was used calculate equal-time Correlation Matrices different scales then explore granularity largest eigenvalue changes ratio sub-dominant spectrum sliding windows. By examination eigenspectrum, we these approaches enable detection major events recording, with MODWT also providing useful insight on details events. suggest some wavelet (e.g., 8 minutes–16 minutes) have potential identify distinct or activities.

参考文章(14)
T. Conlon, M. Crane, H.J. Ruskin, Wavelet multiscale analysis for Hedge Funds: Scaling and strategies Physica A-statistical Mechanics and Its Applications. ,vol. 387, pp. 5197- 5204 ,(2008) , 10.1016/J.PHYSA.2008.05.046
T. Conlon, H.J. Ruskin, M. Crane, Random Matrix Theory and Fund of Funds Portfolio Optimisation Physica A-statistical Mechanics and Its Applications. ,vol. 382, pp. 565- 576 ,(2007) , 10.1016/J.PHYSA.2007.04.039
José A.O. Matos, Sı́lvio M.A. Gama, Heather J. Ruskin, José A.M.S. Duarte, An econophysics approach to the Portuguese Stock Index—PSI-20 Physica A-statistical Mechanics and Its Applications. ,vol. 342, pp. 665- 676 ,(2004) , 10.1016/J.PHYSA.2004.05.066
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Mosaic organization of DNA nucleotides Physical Review E. ,vol. 49, pp. 1685- 1689 ,(1994) , 10.1103/PHYSREVE.49.1685
S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, M. E. Matsa, C.-K. Peng, M. Simons, H. E. Stanley, Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis Physical Review E. ,vol. 51, pp. 5084- 5091 ,(1995) , 10.1103/PHYSREVE.51.5084
Diane Wilcox, Tim Gebbie, On the analysis of cross-correlations in South African market data Physica A: Statistical Mechanics and its Applications. ,vol. 344, pp. 294- 298 ,(2004) , 10.1016/J.PHYSA.2004.06.138
Adel Sharkasi, Martin Crane, Heather J. Ruskin, Jose A. Matos, The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms Physica A-statistical Mechanics and Its Applications. ,vol. 368, pp. 511- 521 ,(2006) , 10.1016/J.PHYSA.2005.12.048
J. Kwapień, S. Drożdż, A. A. Ioannides, Temporal correlations versus noise in the correlation matrix formalism: an example of the brain auditory response. Physical Review E. ,vol. 62, pp. 5557- 5564 ,(2000) , 10.1103/PHYSREVE.62.5557
K. Schindler, H. Leung, C. E. Elger, K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG Brain. ,vol. 130, pp. 65- 77 ,(2006) , 10.1093/BRAIN/AWL304