Real-time anomaly detection over VMware performance data using storm

作者: Mohiuddin Solaimani , Latifur Khan , Bhavani Thuraisingham

DOI: 10.1109/IRI.2014.7051925

关键词:

摘要: Anomaly detection is the identification of items or observations which deviate from an expected pattern in a dataset. This paper proposes novel real time anomaly framework for dynamic resource scheduling VMware-based cloud data center. The monitors VMware performance stream (e.g. CPU load, memory usage, etc.). Hence, continuously needs to collect and make decision without any delay. We have used Apache Storm, distributed handling making prediction Storm chosen over traditional (e.g., Hadoop MapReduce, Mahout) that good batch processing. An incremental clustering algorithm model benign characteristics incorporated our storm-based framework. During continuous incoming test stream, if finds deviated its behavior, it considers as anomaly. shown effectiveness by providing real-time complex analytic functionality data.

参考文章(19)
Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl, AnyOut: Anytime Outlier Detection on Streaming Data Database Systems for Advanced Applications. pp. 228- 242 ,(2012) , 10.1007/978-3-642-29038-1_18
Ted Dunning, Ellen Friedman, Robin Anil, Sean Owen, Mahout in Action ,(2011)
Vipin Kumar, Pang-Ning Tan, Michael M. Steinbach, Introduction to Data Mining ,(2013)
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber, Bigtable ACM Transactions on Computer Systems. ,vol. 26, pp. 1- 26 ,(2008) , 10.1145/1365815.1365816
Moses Charikar, Chandra Chekuri, Tomas Feder, Rajeev Motwani, Incremental Clustering and Dynamic Information Retrieval SIAM Journal on Computing. ,vol. 33, pp. 1417- 1440 ,(2004) , 10.1137/S0097539702418498
Zengyou He, Xiaofei Xu, Shengchun Deng, Discovering cluster-based local outliers Pattern Recognition Letters. ,vol. 24, pp. 1641- 1650 ,(2003) , 10.1016/S0167-8655(03)00003-5
Jasmina Arifovic, Genetic algorithm learning and the cobweb model Journal of Economic Dynamics and Control. ,vol. 18, pp. 3- 28 ,(1994) , 10.1016/0165-1889(94)90067-1
Wen Jin, Anthony K. H. Tung, Jiawei Han, Mining top-n local outliers in large databases knowledge discovery and data mining. pp. 293- 298 ,(2001) , 10.1145/502512.502554
Tianming Hu, Sam Y Sung, Detecting pattern-based outliers Pattern Recognition Letters. ,vol. 24, pp. 3059- 3068 ,(2003) , 10.1016/S0167-8655(03)00165-X
Li Yu, Zhiling Lan, A scalable, non-parametric anomaly detection framework for Hadoop Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference. pp. 22- ,(2013) , 10.1145/2494621.2494643