Topologies arising from metrics valued in abelian ℓ-groups

作者: Ralph Kopperman , Homeira Pajoohesh , Tom Richmond

DOI: 10.1007/S00012-011-0132-5

关键词:

摘要: This paper considers metrics valued in abelian l-groups and their induced topologies. In addition to a metric into an l-group, one needs filter the positive cone determine which balls are neighborhoods of center. As key special case, we discuss topology on lattice ordered group from dG consisting weak units G; case \({\mathbb R^{n}}\) , this is Euclidean topology. We also show that there many Nachbin convex topologies l-group not by any l-group.

参考文章(11)
V. M. Kopytov, N. Ya. Medvedev, The Theory of Lattice-Ordered Groups ,(1994)
R. P. Dilworth, Review: G. Birkhoff, Lattice theory Bulletin of the American Mathematical Society. ,vol. 56, pp. 204- 206 ,(1950) , 10.1090/S0002-9904-1950-09392-6
Ralph Kopperman, All topologies come from generalized metrics American Mathematical Monthly. ,vol. 95, pp. 89- 97 ,(1988) , 10.2307/2323060
Edwin Hewitt, Rings of real-valued continuous functions. I Transactions of the American Mathematical Society. ,vol. 64, pp. 45- 99 ,(1948) , 10.1090/S0002-9947-1948-0026239-9
J. A. Kalman, Triangle inequality in $l$-groups Proceedings of the American Mathematical Society. ,vol. 11, pp. 395- ,(1960) , 10.1090/S0002-9939-1960-0110758-1
S. G. MATTHEWS, Partial Metric Topology Annals of the New York Academy of Sciences. ,vol. 728, pp. 183- 197 ,(1994) , 10.1111/J.1749-6632.1994.TB44144.X
Leopoldo Nachbin, Topology and order ,(1965)
M. Jasem, Intrinsic metric preserving maps on partially ordered groups Algebra Universalis. ,vol. 36, pp. 135- 140 ,(1996) , 10.1007/BF01192713
Ralph D. Kopperman, S. Matthews, H. Pajoohesh, Partial metrizability in value quantales Applied general topology. ,vol. 5, pp. 115- 127 ,(2004) , 10.4995/AGT.2004.2000
W. Charles Holland, Intrinsic metrics for lattice ordered groups Algebra Universalis. ,vol. 19, pp. 142- 150 ,(1984) , 10.1007/BF01190425