Scaling in second-order electron correlation calculations using systematic sequences of even-tempered basis sets

作者: Stephen Wilson

DOI: 10.1007/BF00574437

关键词:

摘要: Improved results can often be obtained from second-order Rayleigh-Schrodinger perturbation calculations of electron correlation energies using large basis sets by introducing a scaling factor in the zero-order Hamiltonian. The parameter may determined full third-order smaller set. This procedure applied systematic fashion employing sequence even-tempered sets. Calculations illustrating this approach for beryllium atom and neon are presented. is also employed conjunction with universal functions. Correlation energy — Mang-body theory.

参考文章(28)
Ivan Hubač, Petr Čársky, Computational methods of correlation energy ChemInform. ,vol. 9, pp. 97- 164 ,(1978) , 10.1007/BFB0048837
S. Sampanthar, N. H. March, W. H. Young, Donald H. Kobe, The many-body problem in quantum mechanics ,(1967)
Special invariance properties of the [N+1/N] Padé approximants in Rayleigh-Schrödinger perturbation theory Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 356, pp. 363- 374 ,(1977) , 10.1098/RSPA.1977.0139
David M. Silver, W.C. Nieuwpoort, UNIVERSAL ATOMIC BASIS SETS Chemical Physics Letters. ,vol. 57, pp. 421- 422 ,(1978) , 10.1016/0009-2614(78)85539-0
Stephen Wilson, David M. Silver, Diagrammatic perturbation theory: Many‐body effects in the X1Σ+ states of first‐row and second‐row diatomic hydrides The Journal of Chemical Physics. ,vol. 66, pp. 5400- 5411 ,(1977) , 10.1063/1.433902
C. M. Reeves, M. C. Harrison, Use of Gaussian Functions in the Calculation of Wavefunctions for Small Molecules. II. The Ammonia Molecule The Journal of Chemical Physics. ,vol. 39, pp. 11- 17 ,(1963) , 10.1063/1.1733984
Stephen Wilson, David M. Silver, Universal basis sets in molecular calculations Chemical Physics Letters. ,vol. 63, pp. 367- 369 ,(1979) , 10.1016/0009-2614(79)87037-2