The characteristic subspace lattice of a linear transformation

作者: David Mingueza , M. Eulàlia Montoro , Alicia Roca

DOI: 10.1016/J.LAA.2016.06.003

关键词:

摘要: Abstract Given a square matrix A ∈ M n ( F ) , the lattices of hyperinvariant Hinv and characteristic Chinv subspaces coincide whenever ≠ G 2 . If polynomial splits over can be considered nilpotent. In this paper we investigate properties lattice J when = for nilpotent particular, prove it to self-dual.

参考文章(7)
L Rodman, P Lancaster, Israel Gohbert, Invariant subspaces of matrices with applications ,(1986)
P.A. Fillmore, Domingo A. Herrero, W.E. Longstaff, The hyperinvariant subspace lattice of a linear transformation Linear Algebra and its Applications. ,vol. 17, pp. 125- 132 ,(1977) , 10.1016/0024-3795(77)90032-5
Nathan Jacobson, Lectures in abstract algebra ,(1951)
David Mingueza, M. Eulàlia Montoro, Juan R. Pacha, Description of characteristic non-hyperinvariant subspaces over the field GF(2) Linear Algebra and its Applications. ,vol. 439, pp. 3734- 3745 ,(2013) , 10.1016/J.LAA.2013.10.025
L. Brickman, P. A. Fillmore, The invariant subspace lattice of a linear transformation Canadian Journal of Mathematics. ,vol. 19, pp. 810- 822 ,(1967) , 10.4153/CJM-1967-075-4
Pudji Astuti, Harald K. Wimmer, Characteristic and hyperinvariant subspaces over the field GF(2) Linear Algebra and its Applications. ,vol. 438, pp. 1551- 1563 ,(2013) , 10.1016/J.LAA.2011.03.047
Pudji Astuti, Harald K. Wimmer, Hyperinvariant, characteristic and marked subspaces Operators and Matrices. pp. 261- 270 ,(2009) , 10.7153/OAM-03-16