作者: David Mingueza , M. Eulàlia Montoro , Alicia Roca
DOI: 10.1016/J.LAA.2016.06.003
关键词:
摘要: Abstract Given a square matrix A ∈ M n ( F ) , the lattices of hyperinvariant Hinv and characteristic Chinv subspaces coincide whenever ≠ G 2 . If polynomial splits over can be considered nilpotent. In this paper we investigate properties lattice J when = for nilpotent particular, prove it to self-dual.