Árboles de estimación estocástica de probabilidades: Newton Trees

作者: Fernando Martínez Plumed

DOI:

关键词:

摘要:

参考文章(31)
Charles X. Ling, Jin Huang, Using AUC and Accuracy in Evaluating Learning Algorithms - Appendices. IEEE Transactions on Knowledge and Data Engineering. ,vol. 17, ,(2005)
Ian Davidson, Visualizing Clustering Results. siam international conference on data mining. pp. 3- 18 ,(2002)
Vicente Estruch Gregori, Bridging the gap between distance and generalisation: symbolic learning in metric spaces Universitat Politècnica de València. ,(2008)
Isabelle Alvarez, Stephan Bernard, Ranking cases with decision trees: a geometric method that preserves intelligibility international joint conference on artificial intelligence. pp. 635- 640 ,(2005)
José Hernández-Orallo, Peter A. Flach, César Ferri, Learning Decision Trees Using the Area Under the ROC Curve international conference on machine learning. pp. 139- 146 ,(2002)
Foster Provost, Pedro Domingos, Tree Induction for Probability-Based Ranking Machine Learning. ,vol. 52, pp. 199- 215 ,(2003) , 10.1023/A:1024099825458
Thomas G. Dietterich, Ensemble Methods in Machine Learning Multiple Classifier Systems. pp. 1- 15 ,(2000) , 10.1007/3-540-45014-9_1
César Ferri, Peter A. Flach, José Hernández-Orallo, Improving the AUC of probabilistic estimation trees european conference on machine learning. pp. 121- 132 ,(2003) , 10.1007/978-3-540-39857-8_13
Ron Kohavi, Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid knowledge discovery and data mining. pp. 202- 207 ,(1996)