Conditional tests for elliptical symmetry using robust estimators

作者: Ana M. Bianco , Graciela Boente , Isabel M. Rodrigues

DOI: 10.1080/03610926.2015.1026997

关键词:

摘要: ABSTRACTThis paper presents a procedure for testing the hypothesis that underlying distribution of data is elliptical when using robust location and scatter estimators instead sample mean covariance matrix. Under mild assumptions include distributions without first moments, we derive test statistic asymptotic behavior under null special alternatives. Numerical experiments allow to compare tests based on matrix with estimators, various different We also provide numerical comparison other competing tests.

参考文章(21)
Vladimir Koltchinskii, Lyudmila Sakhanenko, Testing for Ellipsoidal Symmetry of a Multivariate Distribution Birkhäuser, Boston, MA. pp. 493- 510 ,(2000) , 10.1007/978-1-4612-1358-1_32
Luisa Turrin Fernholz, Von Mises’ Method Springer, New York, NY. pp. 5- 15 ,(1983) , 10.1007/978-1-4612-5604-5_2
A. Manzotti, Francisco J. Pérez, Adolfo J. Quiroz, A Statistic for Testing the Null Hypothesis of Elliptical Symmetry Journal of Multivariate Analysis. ,vol. 81, pp. 274- 285 ,(2002) , 10.1006/JMVA.2001.2007
Rudolf Beran, Testing for Ellipsoidal Symmetry of a Multivariate Density Annals of Statistics. ,vol. 7, pp. 150- 162 ,(1979) , 10.1214/AOS/1176344561
Li-Xing Zhu, Georg Neuhaus, Conditional tests for elliptical symmetry Journal of Multivariate Analysis. ,vol. 84, pp. 284- 298 ,(2003) , 10.1016/S0047-259X(02)00036-2
D. Morales, L. Pardo, M. C. Pardo, I. Vajda, Rényi statistics for testing composite hypotheses in general exponential models Statistics. ,vol. 38, pp. 133- 147 ,(2004) , 10.1080/02331880310001634647
James R. Schott, Testing for elliptical symmetry in covariance-matrix-based analyses Statistics & Probability Letters. ,vol. 60, pp. 395- 404 ,(2002) , 10.1016/S0167-7152(02)00306-1
Fred W. Huffer, Cheolyong Park, A test for elliptical symmetry Journal of Multivariate Analysis. ,vol. 98, pp. 256- 281 ,(2007) , 10.1016/J.JMVA.2005.09.011
V.I. Koltchinskii, Lang Li, Testing for Spherical Symmetry of a Multivariate Distribution Journal of Multivariate Analysis. ,vol. 65, pp. 228- 244 ,(1998) , 10.1006/JMVA.1998.1743